homehome Home chatchat Notifications


Despite oral hygiene, chewing still leaves nanowear on teeth

This fundamental understanding could lead to better oral health but also new insights in evolutionary biology.

Tibi Puiu
October 25, 2017 @ 6:19 pm

share Share

Oral hygiene is important for teeth and gum health but despite our best efforts, the enamel still suffers wear and tear. A new study found that no matter a person’s diet, the act of chewing food wears teeth down at the nanoscale.

chewing highland beauty

A chewing highland beauty. Credit: Pixabay.

Peter Ungar, an anthropologist, and Ryan Tian, associate professor of inorganic chemistry, both at the University of Arkansas, worked with Chinese colleagues at the Southwest Jiaotong University in Chengdu to study the different kinds of wear on the nanostructures that make up tooth enamel.

Enamel is the outer layer of each tooth and is the hardest, most highly mineralized substance in the human body. It’s made of ribbon-like strings of nanoparticles called hydroxyapatite crystallites, which are stacked on top of each other and glued together by proteins. Enamel is actually translucent, so you can see right through it. Dentin, the bulk material of any tooth, is what’s responsible for tooth color — whether white, grey, or yellowed.

Using high power microscopes, researchers imaged the surface of human molars as they applied pressure using tips made of different kinds of materials. This simulated the pressure created on enamel when crushing food. They also moved the tip across the surface of the molars, simulating the action of teeth moving against each other when eating.

Researchers found that scratching damaged molars more than indentation. In other words, blunt force was less damaging than sharp objects scraping against teeth, i.e. chewing. There was visible damage in both cases, nevertheless.

Three kinds of defects on the surface of enamel were reported — plucking, deformation, and fragmentation.

Nanoscale crystallites that make up tooth enamel before and after researchers applied pressure. Credit: University of Arkansas.

Nanoscale crystallites that make up tooth enamel before and after researchers applied pressure. Credit: University of Arkansas.

Plucking happened when the crystallites were separated from each other. When the force was increased, deformation occurred which represents the bending and squeezing of crystallites. Applying even more pressure caused the chemical bonds holding the crystallites together to break, resulting in fragmentation.

“Hydroxyapatite crystallites are the fundamental units of enamel, each less than 1/1000th the thickness of a human hair,” said Ungar. “Most research on tooth wear to date has focused on effects at much larger scales, but we have to study enamel at this finer level to truly understand the nature of how the hardest tissue in our bodies resists wear and tear.”

Understanding how chewing damages teeth at a fundamental level is important not only for clinical dentistry but also for seemingly unrelated fields like evolutionary biology. This basic understanding could help some scientists spot new clues from archaeological remains.

The findings in the surface tribological chemistry can help us understand the nature of the interfacial chemical bonding between the nanoparticles that Mother Nature uses to make biominerals of all types on demand,” said Tian.

Scientific reference: Enamel crystallite strength and wear: Nanoscale responses of teeth to chewing loadsJournal of the Royal Society Interface (2017).

share Share

Coolness Isn’t About Looks or Money. It’s About These Six Things, According to Science

New global study reveals the six traits that define coolness around the world.

Ancient Roman Pompeii had way more erotic art than you'd think

Unfortunately, there are few images we can respectably share here.

Wild Orcas Are Offering Fish to Humans and Scientists Say They May Be Trying to Bond with Us

Scientists recorded 34 times orcas offered prey to humans over 20 years.

No Mercury, No Cyanide: This is the Safest and Greenest Way to Recover Gold from E-waste

A pool cleaner and a spongy polymer can turn used and discarded electronic items into a treasure trove of gold.

This $10 Hack Can Transform Old Smartphones Into a Tiny Data Center

The throwaway culture is harming our planet. One solution is repurposing billions of used smartphones.

Doctors Discover 48th Known Blood Group and Only One Person on Earth Has It

A genetic mystery leads to the discovery of a new blood group: “Gwada negative.”

More Than Half of Intersection Crashes Involve Left Turns. Is It Time To Finally Ban Them?

Even though research supports the change, most cities have been slow to ban left turns at even the most congested intersections.

A London Dentist Just Cracked a Geometric Code in Leonardo’s Vitruvian Man

A hidden triangle in the vitruvian man could finally explain one of da Vinci's greatest works.

The Story Behind This Female Pharaoh's Broken Statues Is Way Weirder Than We Thought

New study reveals the ancient Egyptian's odd way of retiring a pharaoh.

China Resurrected an Abandoned Soviet 'Sea Monster' That's Part Airplane, Part Hovercraft

The Soviet Union's wildest aircraft just got a second life in China.