homehome Home chatchat Notifications


Presenting the first brain-gene interface: thought-controlled protein production

You've heard all about controlling robotic arms or prosthesis with thoughts, but what about genes? In a deceptively simple experiment, bioengineers in Switzerland combined a classical brain-computer interface with a biological implant, which effectively allowed a genetic switch to be operated by brain activity. Imagine wearing a "funny" cap fitted with electrodes and a tiny implant, then controlling your mood by thinking the perfect "pure" thoughts that would cause a cascade of feel good chemicals. The same could be made for painkillers, so you can deliver just the right amount. Really, there's a lot of potential floating around this thing.

Tibi Puiu
April 7, 2015 @ 2:12 pm

share Share

You’ve heard about controlling robotic arms or prosthesis with thoughts, but what about genes? In a deceptively simple experiment, bioengineers in Switzerland combined a classical brain-computer interface with a biological implant, which effectively allowed a genetic switch to be operated by brain activity.

Imagine wearing a “funny” cap fitted with electrodes and a tiny implant, then controlling your mood by thinking the perfect “pure” thoughts that would cause a cascade of feel good chemicals. If it works, this could basically work as a painkiller, so you can deliver just the right amount. Really, there’s a lot of potential floating around this thing.

brain computer interface

Image: zine.co.in

The setup went something like this: human participants wore a standard EEG cap that registered their brain activity, then a device translated this into a electrical signal and sent it to a  electromagnetic field generator. Each specific kind of brain activity thus corresponded to a certain magnetic field. In the meantime, researchers tweaked bacterial genes into kidney cells to cause them to produce light-sensitive proteins. Then, the cells were bioengineered so when they sensed light these would produce  a protein called secreted alkaline phosphatase (SEAP). The protein was chosen for no particular reason other than it is extremely easy to detect in the blood, so it fit well for demonstrative purposes. A mini-setup was made consisting of the engineered cells and a LED, all encased in a plastic pouch – this was inserted under the skin of several mice.

[MUST READ] Brain-computer interface allows first telepathic exchange of information between two humans

The human volunteers were tasked with various cognitive activities, like playing Minecraft or meditating. These activities generated a magnetic field which activated the implant’s infrared LED, triggering SEAP production. Playing Minecraft produced moderate levels of SEAP, while meditating resulted in high levels. Interestingly enough, a third group was thought to consciously light the LEDs on or off, thereby purposely turning SEAP production on or off (Nature Communications). As you can see, by using an implant, the setup harnesses the power of optogenetics without requiring the user to have his or her own cells genetically altered. We’ll definitely hear more about this in the future.

“Controlling genes in this way is completely new and is unique in its simplicity,” explains Martin Fussenegger, Professor of Biotechnology and Bioengineering at the Department of Biosystems (D-BSSE) in Basel.

Fussenegger hopes that a thought-controlled implant could one day help to combat neurological diseases, such as chronic headaches, back pain and epilepsy, by detecting specific brainwaves at an early stage and triggering and controlling the creation of certain agents in the implant at exactly the right time.

share Share

The perfect pub crawl: mathematicians solve most efficient way to visit all 81,998 bars in South Korea

This is the longest pub crawl ever solved by scientists.

This Film Shaped Like Shark Skin Makes Planes More Aerodynamic and Saves Billions in Fuel

Mimicking shark skin may help aviation shed fuel—and carbon

China Just Made the World's Fastest Transistor and It Is Not Made of Silicon

The new transistor runs 40% faster and uses less power.

Ice Age Humans in Ukraine Were Masterful Fire Benders, New Study Shows

Ice Age humans mastered fire with astonishing precision.

The "Bone Collector" Caterpillar Disguises Itself With the Bodies of Its Victims and Lives in Spider Webs

This insect doesn't play with its food. It just wears it.

University of Zurich Researchers Secretly Deployed AI Bots on Reddit in Unauthorized Study

The revelation has sparked outrage across the internet.

Giant Brain Study Took Seven Years to Test the Two Biggest Theories of Consciousness. Here's What Scientists Found

Both came up short but the search for human consciousness continues.

The Cybertruck is all tricks and no truck, a musky Tesla fail

Tesla’s baking sheet on wheels rides fast in the recall lane toward a dead end where dysfunctional men gather.

British archaeologists find ancient coin horde "wrapped like a pasty"

Archaeologists discover 11th-century coin hoard, shedding light on a turbulent era.

The Fat Around Your Thighs Might Be Affecting Your Mental Health

New research finds that where fat is stored—not just how much you have—might shape your mood.