homehome Home chatchat Notifications


Bacteria steal genetic material from predator viruses using Spam gene

This could help us keep dangerous viruses at bay.

Mihai Andrei
May 10, 2019 @ 12:42 am

share Share

Just like we have bacteria, dangerous microscopic organisms that can cause serious problems, bacteria have bacteriophages (or phages) — viruses that prey on them. Phages are so devastating to bacteria that they’re estimated to kill about half of the bacteria in the world’s oceans every two days. Now, researchers have uncovered a surprising mechanism through which some bacteria defend themselves from phages: by stealing genetic material.

“This study shows bacteria’s ability to transform an implement of war into a tool to create life,” said the study’s lead author, Amelia Randich. “It’s like watching evolution beat a sword into plowshare.”

Watch a video of bacteria-killing phages in action.

Like human viruses, bacteriophages can’t reproduce by themselves, so they inject their own genetic material into cells, hijacking their victims to copy their own genes, thereby producing new virus particles that break open and kill the cells. This process is called lysis, and the toxic enzymes that produce cell death are called lysins. However, a family of bacteria called Caulobacterales seem to have developed an antidote.

The key to the antidote is a gene called SpmX, commonly known as “Spam X.” Caulobacterales are a bacterial order whose members grow long appendages called stalks. Spam X appears where cell stalks grow, assigning proteins to support the development of the stalk. However, the gene appears to have originated in bacteriophages and was originally used to destroy bacterial cell walls.

The red section shows the process by which viruses kill bacterial cells to produce new virus particles with help from an enzyme, represented as a ‘Pac-Man’ with razor-sharp teeth. In Caulobacterales, the ‘teeth’ are now blunt, no longer able to kill bacteria, instead helping grow new stalks through the process shown in blue. Credit: Amelia Randich, Indiana University.

Using X-ray crystallography to create 3-D models of SpmX and related protein structures, researchers found remarkable similarities between SpmX and the gene producing the viral lysins. But instead of cracking open cells in Caulobacter, they seem to help guide SpmX to the future position of the stalk.

“Even though it was very, very similar to phage genes, we found a specific mutation in Caulobacter—in the area of the protein used to cut through the bacterial cell wall—that reduced its efficiency,” Brun said.

“Because the sequence was so closely related to the genes in phage, you would expect it to have the same function: to cut the cell wall,” he added. “But instead its activity was reduced to the point where it no longer killed the bacteria. It’s quite remarkable.”

The similarities are too large to be a coincidence, and genetic analysis suggests that bacteria developed and tweaked this gene around 1 billion years in the past. More importantly for us, it could be a way to keep viral infections at bay, or even to use bacteria for innovative uses, such as delivering compounds such as insulin or antibiotics.

The study has been published in Current Biology.

share Share

AI 'Reanimated' a Murder Victim Back to Life to Speak in Court (And Raises Ethical Quandaries)

AI avatars of dead people are teaching courses and testifying in court. Even with the best of intentions, the emerging practice of AI ‘reanimations’ is an ethical quagmire.

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

This new blood test could find cancerous tumors three years before any symptoms

Imagine catching cancer before symptoms even appear. New research shows we’re closer than ever.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths