homehome Home chatchat Notifications


Artificial embryo without sperm or egg forms live fetus

The embryos successfully grew fetal structures in female mice uteruses.

Tibi Puiu
October 18, 2019 @ 3:05 pm

share Share

For the very first time, scientists have made artificial embryos from scratch, without sperm or egg, and implanted them into female mice. The embryos developed into live fetuses, but these exhibited major malformations.

Left: a natural 7-day-and-a-half-old embryo implanted in a female mouse. Right artificial 7-day-and-a-half-old embryo implanted in a female mouse with major malformations.

The team at the University of Texas Southwestern Medical Center used extended pluripotent stem cells, which are cells that have the potential, like an embryo, to develop into any type of tissue in the body. These ‘master cells’ are able to form all three major types of cell groups (ectoderm, endoderm, and mesoderm). Unlike simple pluripotent stem cells, the ‘extended’ variety can develop into tissues that support the embryo, such as the placenta. Without this type of stem cells, embryos cannot develop and grow properly.

The researchers coaxed stem cells to form into all the cells required for the development of an embryo by bathing them into a solution made of nutrients, growth stimulants, and signaling molecules. The cells assembled into embryo-like structures, including placental tissue.

Next, the artificial embryos were implanted into the uteruses of female mice. Only 7% of the implants were successful but those embryos that did work actually started developing early fetal structures. There were major malformations, however, as the tissue structure and organization did not closely resemble that of a normal embryo.

Previously, other research groups had managed to grow artificial embryos but this was the first time that they were successfully implanted and developed placental cells.

In the future, the University of Texas researchers plan on refining their method in order to grow fetuses that are indistinguishable from normal ones. The goal is to replace real embryos and make artificial ones at scale. These embryo models could then be grown in dishes to study early mammalian development and accelerate drug development.

Some of the cells that the researchers used to grow into embryos originally came from the ear of a mouse. Theoretically, the same should be possible for human embryos, but why would we? Besides testing drugs, artificial embryos could be grown from the skin cells of an infertile person. Then, in the lab, these embryos could be studied in order to identify potential genetic defects that might cause infertility.

Even if such stem cell-derived embryos do not completely mimic normal embryo growth, there is still a lot we can learn about mammalian development. But, as is always the case with research that breaks the frontiers of what was once thought possible, our policies haven’t yet kept up with advances. There are serious ethical considerations to possibly making a person from a synthetic embryo. Although such a prospect is still science fiction, rapid developments such as the present study suggest that it is not impossible — and we better prepare.

The findings were reported in the journal Cell.

share Share

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

This new blood test could find cancerous tumors three years before any symptoms

Imagine catching cancer before symptoms even appear. New research shows we’re closer than ever.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics