homehome Home chatchat Notifications


Acoustic tweezers levitate single cells using sound waves

Researchers found a way to manipulate single cells in three dimensions using sound waves. They devised acoustic tweezers that can position minute particles or cells anywhere within the fluid enclosure without touching, altering, deforming or labeling the particles in any way. The resolution or accuracy is between 1-2 micrometers. Work like this might enable us to design tissue implants which faithfully mimic the human tissues or organs destined to be replaced. Other methods, like 3D biological printing, alter or even destroy cells keeping them from functioning the way they ought to.

Tibi Puiu
January 26, 2016 @ 1:36 pm

share Share

Researchers found a way to manipulate single cells in three dimensions using sound waves. They devised acoustic tweezers that can position minute particles or cells anywhere within the fluid enclosure without touching, altering, deforming or labeling the particles in any way. The resolution or accuracy is between 1-2 micrometers. Work like this might enable us to design tissue implants which faithfully mimic the human tissues or organs destined to be replaced. Other methods, like 3D biological printing, alter or even destroy cells keeping them from functioning the way they ought to.

Numerical simulation results mapping the acoustic field around a particle that shows the physical operating principle for the 3-D acoustic tweezers. The 3-D trapping node in the microfluidic chamber is created by two superimposed, orthogonal, standing surface acoustic waves and the induced acoustic streaming. Credit: Tony Jun Huang, Penn State

Numerical simulation results mapping the acoustic field around a particle that shows the physical operating principle for the 3-D acoustic tweezers. The 3-D trapping node in the microfluidic chamber is created by two superimposed, orthogonal, standing surface acoustic waves and the induced acoustic streaming. Credit: Tony Jun Huang, Penn State

The setup is based on a microfluidic device researchers from  MIT, Penn State University, and Carnegie Mellon University previously developed. It uses two sources that each produces a standing acoustic wave — waves of constant height. When the two meet, they form a node whose pressure traps a particle. By altering the phase and amplitude of the wave, the particle is moved in 2D along a X-Y axis. Using this method, researchers separated cancerous cells from healthy cells, something that might prove very useful in diagnosing rare forms of cancer.

Most recently, the setup was upgraded so that particles could be positioned in 3-D. Polystyrene particles as well as mouse fibroblast cells were moved vertically by the researchers by altering the acoustic waves’ power (rate at which sound energy is emitted).

“The results presented in this paper provide a unique pathway to manipulate biological cells accurately and in three dimensions, without the need for any invasive contact, tagging, or biochemical labeling,” says Subra Suresh, president of Carnegie Mellon and former dean of engineering at MIT. “This approach could lead to new possibilities for research and applications in such areas as regenerative medicine, neuroscience, tissue engineering, biomanufacturing, and cancer metastasis.”

Formation of arbitrary cell culture patterns forming a "3," "D," "A." and "T" by printing of single HeLa S3 cells via 3-D acoustic tweezers. Credit: Tony Jun Huang, Penn State.

Formation of arbitrary cell culture patterns forming a “3,” “D,” “A.” and “T” by printing of single HeLa S3 cells via 3-D acoustic tweezers. Credit: Tony Jun Huang, Penn State.

The setup has 1 micrometer accuracy horizontally and 2 micrometer accuracy vertically. In experiments, particles as large as 10 micrometers were basically moved at a pace of about 2.5 micrometers per second. It takes between a couple of seconds to a few minutes for a cell to be placed in the desired position, depending on the distance.

 “Adding a third dimension for precisely manipulating single cells for bioprinting further advances acoustic tweezers technology,” said Ming Dao, director, Nanomechanics Lab, Massachusetts Institute of Technology. “The accompanying modeling provides solutions for cell manipulation, enabling validation of the method as well as possible system optimization.”

“3-D acoustic tweezers can pattern cells with control over the number of cells, cell spacing and the confined geometry, which may offer a unique way to print neuron cells to create artificial neural networks for neuron science applications or regenerative neuron medicine,” said Tony Jun Huang, professor and The Huck Distinguished Chair in Bioengineering Science and Mechanics.

Using the setup, researchers stacked cells together which makes it a form of bioprinting. Findings were reported in PNAS.

“This is an exceptionally innovative approach of manipulating particles and single cells in 3-D in fluids,” says Taher Saif, a professor of mechanical science and engineering at the University of Illinois at Urbana-Champaign, who was not part of the research team. “Since acoustic energy is used for this manipulation, the approach is noninvasive and the cells maintain their viability. Overall, the method presented will be of significant interest for a broad community, from biologists to bioengineers.”

share Share

Ronan the Sea Lion Can Keep a Beat Better Than You Can — and She Might Just Change What We Know About Music and the Brain

A rescued sea lion is shaking up what scientists thought they knew about rhythm and the brain

Did the Ancient Egyptians Paint the Milky Way on Their Coffins?

Tomb art suggests the sky goddess Nut from ancient Egypt might reveal the oldest depiction of our galaxy.

Dinosaurs Were Doing Just Fine Before the Asteroid Hit

New research overturns the idea that dinosaurs were already dying out before the asteroid hit.

Denmark could become the first country to ban deepfakes

Denmark hopes to pass a law prohibiting publishing deepfakes without the subject's consent.

Archaeologists find 2,000-year-old Roman military sandals in Germany with nails for traction

To march legionaries across the vast Roman Empire, solid footwear was required.

Mexico Will Give U.S. More Water to Avert More Tariffs

Droughts due to climate change are making Mexico increasingly water indebted to the USA.

Chinese Student Got Rescued from Mount Fuji—Then Went Back for His Phone and Needed Saving Again

A student was saved two times in four days after ignoring warnings to stay off Mount Fuji.

The perfect pub crawl: mathematicians solve most efficient way to visit all 81,998 bars in South Korea

This is the longest pub crawl ever solved by scientists.

This Film Shaped Like Shark Skin Makes Planes More Aerodynamic and Saves Billions in Fuel

Mimicking shark skin may help aviation shed fuel—and carbon

China Just Made the World's Fastest Transistor and It Is Not Made of Silicon

The new transistor runs 40% faster and uses less power.