homehome Home chatchat Notifications


3D printing stem cells could be used one day to 'manufacture' organs

We’re only in the early days of 3-D printing, but even now the breakthroughs made using such technology are most impressive like the genuine possibility of printing spare parts in space for the ISS, creating objects of great details on the nanoscale or even artificial muscles made using a 3-D printer. What’s fabulous though is […]

Tibi Puiu
February 5, 2013 @ 9:45 am

share Share

We’re only in the early days of 3-D printing, but even now the breakthroughs made using such technology are most impressive like the genuine possibility of printing spare parts in space for the ISS, creating objects of great details on the nanoscale or even artificial muscles made using a 3-D printer. What’s fabulous though is that 3-D printing is developing at an accelerate pace. One day 3-D printers might actually be used to build working human organs saving millions of lives, maybe in a manner similar to how some SciFi movies depict tissue reconstruction.

The stem cell 3-d printer Image of 3-D cell printer courtesy of Colin Hattersley

The stem cell 3-d printer developed by scientists at Heriot-Watt University. (c) Colin Hattersley

The latter idea, though still very far fetched, recently had its foundation laid at the Scotland’s Heriot-Watt University and Roslin Cellab, where researchers there developed a novel technique which allows stem cells to be printed in blobs. Previously, researchers were able to engineer tissue samples combining artificial scaffold-like structures and animal cells, this is a method that is extremely laborious, however. Rather than manually positioning individual cells, using a 3-D printer  one can uniformly and accurately position them to form a desired tissue.

Stem cells, while extremely appealing for their pluripotent ability to morph into any kind of cell, are very hard to print since they are very sensitive to manipulation. The Scottish scientists tackled this issue by developing a sophisticated method that deposit droplets of a consistent size containing living cells through a valve-based printer nozzle that gently dispenses the cells.

The printing system is driven by pneumatic pressure and controlled by the opening and closing of a microvalve. Thus, one can vary the droplet size and rate of dispensing simply by changing the  nozzle diameter, the inlet air pressure or the opening time of the valve.

Still, though these first steps looks extremely promising, do not grow too excited. We are still decades away from developing a system capable of printing organs in 3-D. Organs, unlike muscles for instance, have a highly complex and sophisticated vascular structure that caries nutrients and exits waste, impossible to replicate by today’s technology. Vascular tissue engineering research is already on the works, however, and this aspect too might be taken care of. Make no mistake, it might not happen during our life time.

The method was reported in the journal Biofabrication.

via Scientific American

share Share

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

Your breath can tell a lot more about you that you thought.

In the UK, robotic surgery will become the default for small surgeries

In a decade, the country expects 90% of all keyhole surgeries to include robots.

Bioengineered tooth "grows" in the gum and fuses with existing nerves to mimic the real thing

Implants have come a long way. But we can do even better.

Science Just Debunked the 'Guns Don’t Kill People' Argument Again. This Time, It's Kids

Guns are the leading cause of death of kids and teens.

This Self-Assembling Living Worm Tower Might Be the Most Bizarre Escape Machine

The worm tower behaves like a superorganism.

A Chemical Found in Acne Medication Might Help Humans Regrow Limbs Like Salamanders

The amphibian blueprint for regeneration may already be written in our own DNA.

Scientists Created an STD Fungus That Kills Malaria-Carrying Mosquitoes After Sex

Researchers engineer a fungus that kills mosquitoes during mating, halting malaria in its tracks

Drinking Sugar May Be Far Worse for You Than Eating It, Scientists Say

Liquid sugars like soda and juice sharply raise diabetes risk — solid sugars don't.