homehome Home chatchat Notifications


Unprecedented DNA computer solves Sudoku and mini-Chess, potentially stores an ungodly amount of data

For the first time, DNA offers both data storage and computing in one system.

Tibi Puiu
September 17, 2024 @ 10:19 pm

share Share

Graphic of DNA
Credit: Pixabay.

For billions of years, DNA has quietly carried the blueprints for all life on Earth, encoding instructions for everything from the simplest bacteria to the most complex mammals. Relative to this timeline, the discovery of DNA’s double helix in 1953 happened only an instant ago. But now, in a clever move, scientists are harnessing DNA not just to record life’s instructions, but as a powerful biological computer.

Researchers at North Carolina State University and Johns Hopkins University have developed a technology that, for the first time, enables DNA to perform the full suite of computing functions — storing, retrieving, erasing, and rewriting data — just like a traditional computer. In early tests, this DNA computer even solved puzzles, like simplified versions of sudoku and chess.

DNA: The Future of Data Storage?

DNA is nature’s ultimate data storage medium, capable of storing vast amounts of information in the tiniest volume. Each cell in the human body contains approximately 800 MB of data, according to scientists’ estimates. But, despite its potential, synthetic systems have struggled to match the versatility of electronic devices when it comes to managing data.

Until now.

This new technology, described as a “primordial DNA store and compute engine,” promises to change that. Researchers have demonstrated that DNA-based systems can not only store data, but also perform complex tasks like computing, rewriting, and moving information.

The key to this breakthrough lies in a soft polymer scaffold known as a dendricolloid. These tiny, tree-like structures offer a stable environment for DNA, holding the delicate molecules securely while still allowing them to perform complex tasks. By using this material, the researchers were able to achieve what was once thought impossible: a DNA system that can manage data reliably, even after repeated use.

“We’ve demonstrated that these DNA-based technologies are viable, because we’ve made one,” says Albert Keung, a molecular biologist and co-lead of the study.

Solving Sudoku with DNA

An image showing virtual chess and sudoku grids that the DNA computer was tested on.
Credit: Nature Nanotechnology.

In experiments, the system was able to process basic calculations, including solving small puzzles such as 3×3 chess grids and sudoku. The researchers hope that their work will spark a new era of molecular computing, one that goes beyond simple storage and into the realm of full-fledged biological machines.

What makes this system remarkable compared to previous DNA-based computers is its flexibility. By using enzymes to copy and rewrite data without harming the original DNA, the researchers were able to simulate file deletion and retrieval — the DNA equivalent of erasing a hard drive and filling it with new files. This opens the door for DNA systems that can handle complex, evolving data sets.

“We wanted to develop something that would inspire the field of molecular computing,” says Keung. “And we hope what we’ve done here is a step in that direction.”

The advantages of DNA storage are staggering. With DNA’s incredible data density, a sugar-cube-sized amount could store 10 million gigabytes (GB) of data. That’s the equivalent of thousands of laptops crammed into an object smaller than a pencil eraser. And the stability of the system is remarkable — researchers believe it could last for millennia under the right conditions.

This makes DNA an ideal candidate for long-term, archival storage. If you’re imagining vast data centers shrinking to the size of a closet, you’re not far off the mark. You could store this data for thousands or even millions of years in frozen DNA. Moreover, the team’s material can withstand more than 170 cycles of dehydration and rehydration — compared to just 60 cycles with DNA stored in simpler solutions — making it incredibly robust for long-term use.

“The ability to distinguish DNA information from the nanofibers it’s stored on allows us to perform many of the same functions you can do with electronic devices,” the researchers wrote in their study. This includes copying data without damaging the original, and erasing and rewriting specific pieces of information.

What Does This Mean for the Future?

Although the current system is far from rivaling supercomputers in speed or power, the long-term vision is compelling. A DNA-based archive that stores the sum of all human knowledge that could survive the rise and fall of civilizations. Researchers also see potential applications in fields like medicine, where biological data could be processed in real-time within living organisms.

For now, the research is still in its early stages. But by solving these foundational challenges, scientists like Keung hope to inspire a new wave of molecular computing. “We wanted to develop something that would inspire the field,” he says. “And we hope what we’ve done here is a step in that direction.”

While the road to a DNA-based future is still long, this latest breakthrough signals a fascinating new frontier in computing.

The findings appeared in the journal Nature Nanotechnology.

share Share

The Universe’s First “Little Red Dots” May Be a New Kind of Star With a Black Hole Inside

Mysterious red dots may be a peculiar cosmic hybrid between a star and a black hole.

Peacock Feathers Can Turn Into Biological Lasers and Scientists Are Amazed

Peacock tail feathers infused with dye emit laser light under pulsed illumination.

Helsinki went a full year without a traffic death. How did they do it?

Nordic capitals keep showing how we can eliminate traffic fatalities.

Scientists Find Hidden Clues in The Alexander Mosaic. Its 2 Million Tiny Stones Came From All Over the Ancient World

One of the most famous artworks of the ancient world reads almost like a map of the Roman Empire's power.

Ancient bling: Romans May Have Worn a 450-Million-Year-Old Sea Fossil as a Pendant

Before fossils were science, they were symbols of magic, mystery, and power.

This AI Therapy App Told a Suicidal User How to Die While Trying to Mimic Empathy

You really shouldn't use a chatbot for therapy.

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

Why You Should Stop Using Scented Candles—For Good

They're seriously not good for you.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

To Fight Invasive Pythons in the Everglades Scientists Turned to Robot Rabbits

Scientists are unleashing robo-rabbits to trick and trap giant invasive snakes