homehome Home chatchat Notifications


New microbots can travel to the brain via the nose and deliver treatments

The microbots are applied nasally to treat brain diseases.

Michelle Petersen
December 18, 2021 @ 12:09 am

share Share

Scientists have successfully guided a microbot through the nasal pathways to the brain of a mouse. If the same approach can be replicated in humans, it could be a game-changer against neurodegenerative disease, enabling doctors to deliver therapies directly to the brain.

Image credits: DGIST.

A research team led by DGIST (the Daegu Gyeongbuk Institute of Science and Technology in South Korea) has created a microrobot propelled by magnets that can navigate the human body. The trial, published in the journal Advanced Materials, describes how they manufactured the microrobot, dubbed a Cellbot, by magnetizing stem cells extracted from the human nasal cavity. The scientists then tested the ability of the Cellbot to move through the body’s confined vessels and passages to reach its target, which it completed with ease.

DGIST said in a statement that “This approach has the potential to effectively treat central nervous system disorders in a minimally invasive manner.”

Building an intranasal microrobot

Brain conditions affect tens of millions of people worldwide, with experts estimating that the number of Americans with Alzheimer’s alone could stand at 6.2 million people. Unfortunately, there’s no available cure for many of them. However, much of the research in this field focuses on stem cell therapies.

These therapies comprise special cells that can develop into many different tissue types, making them ideal for regenerative medicine as they can replace structures within the body damaged by disease or harsh therapeutics such as chemotherapy. However, problems may arise when using this type of therapy as the blood-brain barrier (the vascular system that supplies blood to the central nervous system) tightly regulates molecules that go in and out of the brain. This neural boundary prevents most therapeutics from entering without the use of high-risk surgery.

The current study may have finally found a solution for this problem.

The Institute explains their Cellbot consists of human stem cells scraped from structures known as turbinates in the nasal cavity – which they then soaked in a solution containing iron nanoparticles. The metallic particles, invisible to the naked human eye, are amalgamated with the stem cells to magnetize them, which then enables the propulsion of the Cellbots using an external magnetic field. After measuring the magnetization of the microbots, the team put the Cellbots through a rigorous set of trials to test their mobility and regenerative properties.

A microbot obstacle course

In the first test involving microfluid channels, the scientists mapped a tortuous route for the biobots around tiny pillars measuring no more than the width of a human hair placed in microscopic canals full of viscous liquid. In this way, they demonstrated that the Cellbots could traverse obstacles in confined spaces, as would be the case if they were injected into your nose.

They then tested whether the Cellbots were still safe to use as a therapy due to the presence of iron. Micro-brain organoids were grown in the lab, and the Cellbots successfully grafted onto them in the same fashion as stem cells. These results suggested that the Cellbots could differentiate into neuronal cells and help to regenerate damaged brain tissues just like their native counterparts.

Finally, a swarm of Cellbots was propelled by an external magnetic field to a target region in the mouse brain via the nasal pathway. The biobots were tagged using a fluorescent marker and guided by the scientists to traverse the blood-brain barrier and target the cortex of the frontal region of the animal’s brain – where the nervous system accepted and integrated them.

New hope for untreatable brain disease

In their whitepaper, the researchers conclude that the collective results of their experiments demonstrate that the Cellbots can be successfully administered nasally and guided manually to the target brain region. The study represents a promising approach for untreatable central nervous system diseases. Professor Choi, DGIST head researcher, concluded:

“This research overcomes the limitations in the delivery of a therapeutic agent into brain tissues owing to the blood-brain barrier.” He added, “It opens new possibilities for the treatment of various intractable neurological diseases, such as Alzheimer’s disease, Parkinson’s disease, and brain tumors, by enabling accurate and safe targeted delivery of stem cells through the movement of a magnetically powered microrobot via the intranasal pathway.”

share Share

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.

The Crystal Behind Next Gen Solar Panels May Transform Cancer and Heart Disease Scans

Tiny pixels can save millions of lives and make nuclear medicine scans affordable for both hospitals and patients.

This Teen Scientist Turned a $0.50 Bar of Soap Into a Cancer-Fighting Breakthrough and Became ‘America’s Top Young Scientist’

Heman's inspiration for his invention came from his childhood in Ethiopia, where he witnessed the dangers of prolonged sun exposure.

Japan Is Starting to Use Robots in 7-Eleven Shops to Compensate for the Massive Shortage of Workers

These robots are taking over repetitive jobs and reducing workload as Japan combats a worker crisis.

A small, portable test could revolutionize how we diagnose Alzheimer's

A passive EEG scan could spot memory loss before symptoms begin to show.

Researchers Turned WiFi into a Medical Tool That Reads Your Pulse With Near Perfect Accuracy

Forget health trackers, the Wi-Fi in your living room may soon monitor your heartbeat.

A Light-Based AI Can Generate Images Using Almost No Energy

The future of AI art might be powered by lasers instead of GPUs.

Your Next Therapist Could be a Video Game or a Wearable and It Might Actually Work

An inside look at a new wave of evidence-backed digital therapies.

2.2 Million Fat-Removal Surgeries a Year: What's Behind the Body Contouring Boom

From liposuction to cryolipolysis, fat-removal is now one of the most common cosmetic choices worldwide.

Labiaplasty Is the Fastest-Growing Cosmetic Surgery Worldwide — And It’s Not Just About Looks

Once a taboo subject, vaginal rejuvenation is now part of a broader conversation about women’s intimate wellness.