homehome Home chatchat Notifications


Japanese Scientists Pull Tiniest Cart and Ferris Wheel With Microscopic Workhorses

Researchers at the University of Tokyo harness algae cells to drive micromachines.

Tibi Puiu
July 11, 2024 @ 7:26 pm

share Share

Scanning electron microscope images of the two micromachines.
Scanning electron microscope images of the two micromachines. Credit: The Shoji Takeuchi Research Group at the University of Tokyo.

You wouldn’t choose algae of all things as a beast of labor, but in the microscopic world, these microorganisms are veritable workhorses. Researchers in Japan harnessed the motion of green algae cells by attaching micromachines, including a “scooter” that moves forward and a “rotator” that might just be the smallest Ferris wheel in the world.

These micromachines, reminiscent of futuristic nanobots, showcase the potential for algae-driven technology. The results are spectacular.

Researchers at the University of Tokyo’s Shoji Takeuchi Research Group decided to embark on this study after being impressed with Chlamydomonas reinhardtii’s locomotion. These tiny algae measure only 10 microns (a hundredth of a millimeter), but they can move at 100 microns per second — that’s ten body lengths every second.

“We were inspired to try and harness Chlamydomonas reinhardtii, a very common algae found all over the world, after being impressed by its swift and unrestricted swimming capabilities,” said Naoto Shimizu, a student from the Graduate School of Information Science and Technology at the University of Tokyo.

“We’ve now shown that these algae can be trapped without impairing their mobility, offering a new option for propelling micromachines which could be used for engineering or research purposes.”

The cart-like “scooter” made dynamic turns and backflips which dazzled the scientists. Credit: The Shoji Takeuchi Research Group at the University of Tokyo.

Shimizu and colleagues devised two types of micromachines: the “scooter” and the “rotator.” Both are propelled by the single-celled green algae. These algae are trapped in basket-like structures which act as a harness to attach the micromachines, allowing them to swim freely and move the devices. The algae use their two flagella at the front of the cell to propel the machines, similar to a swimmer’s breaststroke.

The micromachines were fabricated using a cutting-edge 3D printing technology known as two-photon stereolithography. This method allows for precise manufacturing of microstructures from plastic at a scale of 1 micrometer (0.001 millimeter).

With four algae in the traps, the rotor moved at an average speed between 20 and 40 micrometers per second. Credit: The Shoji Takeuchi Research Group at the University of Tokyo.

The “scooter” — made of two traps each holding algae, which look a lot like a podracer from Star Wars — was designed to move in a straightforward direction but surprised researchers with its erratic rolling and flipping motions reminiscent of some extreme sports show. The “rotator,” on the other hand, is made of four traps spaced evenly on an imaginary circle; it displayed the expected smooth rotational movement.  

“This has prompted us to further investigate how the collective movement of multiple algae influences the motion of the micromachine,” said lead author Project Research Associate Haruka Oda.

The researchers believe that these algae-powered micromachines could prove useful in environmental engineering and research. The algae do not require chemical modifications or external guidance structures, which is a major plus for such applications. On the flipside, green algae cells only live for about two days but during this time they reproduce into new algae. These experiments were carried out over several hours during which the micromachines maintained their form and mode of operation.

The team plans to enhance the design of the rotator to achieve faster speeds and create more complex micromachine models.

“The methods developed here are not only useful for visualizing the individual movements of algae, but also for developing a tool that can analyze their coordinated movements under constrained conditions,” said Professor Shoji Takeuchi from IST, who supervised the project. “These methods have the potential to evolve in the future into a technology that can be used for environmental monitoring in aquatic environments, and for substance transport using microorganisms, such as moving pollutants or nutrients in water.”

The micromachines were described in the journal Small.

share Share

Ronan the Sea Lion Can Keep a Beat Better Than You Can — and She Might Just Change What We Know About Music and the Brain

A rescued sea lion is shaking up what scientists thought they knew about rhythm and the brain

Did the Ancient Egyptians Paint the Milky Way on Their Coffins?

Tomb art suggests the sky goddess Nut from ancient Egypt might reveal the oldest depiction of our galaxy.

Dinosaurs Were Doing Just Fine Before the Asteroid Hit

New research overturns the idea that dinosaurs were already dying out before the asteroid hit.

Denmark could become the first country to ban deepfakes

Denmark hopes to pass a law prohibiting publishing deepfakes without the subject's consent.

Archaeologists find 2,000-year-old Roman military sandals in Germany with nails for traction

To march legionaries across the vast Roman Empire, solid footwear was required.

Mexico Will Give U.S. More Water to Avert More Tariffs

Droughts due to climate change are making Mexico increasingly water indebted to the USA.

Chinese Student Got Rescued from Mount Fuji—Then Went Back for His Phone and Needed Saving Again

A student was saved two times in four days after ignoring warnings to stay off Mount Fuji.

The perfect pub crawl: mathematicians solve most efficient way to visit all 81,998 bars in South Korea

This is the longest pub crawl ever solved by scientists.

This Film Shaped Like Shark Skin Makes Planes More Aerodynamic and Saves Billions in Fuel

Mimicking shark skin may help aviation shed fuel—and carbon

China Just Made the World's Fastest Transistor and It Is Not Made of Silicon

The new transistor runs 40% faster and uses less power.