homehome Home chatchat Notifications


A human just defeated an AI in Go. Here's why that matters

Go is arguably the most complex game devised by mankind.

Mihai Andrei
February 24, 2023 @ 3:22 pm

share Share

In 2016, the news was that AI beat humans at Go. Fast forward seven years, and the news is that humans beat AI at Go. But it’s not like we got much smarter between tries — we simply learned to exploit its bugs.

A game of Go. Simple in essence, but extremely complex in practice. Image credits: Elena Popova.

Go is so mind-bendingly complex that it makes chess seem like tic tac toe. Go is played on a 19 by 19 board (compared to just 8 by 8 for chess), and a typical game of around 150 moves has around  10360 possible moves, or 1 followed by 360 zeroes — a number that’s simply unfathomable. For comparison, it’s estimated that there are some 1082 atoms in the universe.

Calculating everything in the game of Go is simply not possible, so players often rely on their intuition and pattern recognition skills, which is why Go was thought to be unconquerable by AIs. But in 2016, DeepMind’s AlphaGo turned all that on its head. Despite staunch resistance from mankind’s champion, AI triumphed and got more and more ahead of humanity.

The best player of Go is currently KataGo, a machine-learning algorithm that taught itself how to play, surpassing even previous AI iterations.

KataGo is a monster, it just wipes the floor with all opponents. But researchers have been looking for potential flaws or weaknesses in KataGo. Recently, a team of researchers published a preprint of their research in which they describe how they train their own AI opponents, specifically aimed at KataGo. They don’t want to become better players, they just want to trick the AI.

“Notably, our adversaries do not win by learning to play Go better than KataGo – in fact, our adversaries are easily beaten by human amateurs,” the team wrote in their paper. “Instead, our adversaries win by tricking KataGo into making serious blunders.”

This is where Kellin Pelrine steps in. Pelrine is a good player, but an amateur. Specifically, he’s one level below the top amateur ranking. He’s also one of the study authors, so he was well aware of the vulnerabilities of KataGo, so he thought why not try his own hand?

Apparently, it was surprisingly easy to find a way to defeat AI by exploiting its weakness. Pelrine managed to beat KataGo 14 out of 15 times. For comparison, KataGo beat AlphaGo 100 times out of 100, and AlphaGo beat mankind’s best player 4-1.

But as is so often the case, this isn’t about the game itself, it’s about what this means for the future of artificial intelligence. The main takeaway is that performance doesn’t always translate into robustness. This failure of the Go-playing algorithm is a bit like a self-driving car crashing into a tree because the bark had a specific color. In other words, even when something seems to be performing extremely well, there could be fringe situations where it behaves badly. This is less of a problem in Go, and more of a problem when AI steps into the real world, so this is an important cautionary tale.

Crucially, Pelrine’s tactic would have been quite easily spotted by a human. He simply created a loop of stones to encircle the opponent’s stones, but then started making moves in the corners of the board to distract the AI. It’s not completely trivial, says Pelrine, but not very difficult.

Artificial systems, however, don’t have the ability to react to situations they’re not prepared for. They don’t have “common sense”. In fact, this is why game-playing AIs are so important: they teach us about how these algorithms behave — not just in terms of opportunities and performance, but also in terms of what can go wrong.

It’s common to find flaws and exploits in AI systems. Ironically, this is also done with the aid of computers, but this field is extremely important and often overlooked. More and more, we’re seeing AIs being deployed into the world with little verification. Maybe, just maybe, we should learn from this type of event and pay more attention to how we deploy such systems in real life.

share Share

Teen Influencer Watches Her Bionic Hand Crawl Across a Table on Its Own

The future of prosthetics is no longer science fiction.

Meet the Indian Teen Who Can Add 100 Numbers in 30 Second and Broke 6 Guinness World Records for Mental Math

The Indian teenager is officially the world's fastest "human calculator".

NASA Captured a Supersonic Jet Breaking the Sound Barrier and the Image Is Unreal

The coolest thing about this flight is that there was no sonic boom.

Fully Driverless Trucks Hit Texas Highways (This Time With No Human Oversight)

Driverless trucks will haul freight in Texas without a human behind the wheel.

A Woman Asked ChatGPT for a Palm Reading and It Flagged a Mole That Might Be Cancer

A viral TikTok recounts the story of a young woman who turned to ChatGPT for love advice but received an unsolicited medical advice instead.

Japan Plans to Beam Solar Power from Space to Earth

The Sun never sets in space — and Japan has found a way to harness this unlimited energy.

Japan Just Tested a Railgun at Sea Against Hypersonic Missiles and It Could Change Warfare Forever

A new sea trial brings Japan’s electromagnetic railgun closer to frontline readiness.

Tiny Chinese Satellite Sent Hack-Proof Quantum Messages 12,900 Kilometers Through Space. Is a Quantum Internet Around the Corner?

The US and Europe are now racing to catch up to China.

This Stretchy Battery Still Works After Being Twisted, Punctured, and Cut in Half

Not the most energy dense but its ability to withstand abuse is unparalleled.

Yeast in Space? Scientists Just Launched a Tiny Lab to See If We Can Create Food in Orbit

Microbes can brew food in space — a game-changer for astronauts.