homehome Home chatchat Notifications


A Factory for Cyborg Insects? Researchers Unveil Mass Production of Robo-Roaches

The new system can turn cockroaches into cyborgs in under 70 seconds.

Tibi Puiu
December 18, 2024 @ 8:53 pm

share Share

Image of cyborg cockroach with the attached electrodes
A researcher shows a Madagascar hissing cockroach, mounted with a “backpack” of electronics and a solar cell that enable remote control of its movement. This is part of a previous effort from 2022 by researchers in Japan. Similar cyborg-roaches have been demonstrated by research labs across the world. Credit: REUTERS/Kim Kyung-Hoon

In a lab in Singapore, robots are hard at work — not on cars or gadgets, but on cockroaches. Grab a chair, you might want to sit down for this one.

This work is part of a breakthrough system designed to convert living insects into “cyborgs,” combining biology with engineering in a process that’s faster, more efficient, and eerily precise. I’m talking about what essentially amounts to a factory of insect cyborgs. The goal? To turn one of the world’s most resilient creatures into an invaluable tool for navigating disaster zones.

Madagascar hissing cockroaches (Gromphadorhina portentosa), famed for their toughness, take center stage. Researchers at Nanyang Technological University have automated the delicate process of equipping these arthropods with tiny electronic backpacks, reducing assembly time from 30 minutes to just 68 seconds.

Dubbed the “Cyborg Insect Factory,” the system uses a robotic arm guided by a type of AI known as deep learning to implant control mechanisms that steer the insects via antenna stimulation.

“We’re laying the foundation for scalable production and deployment in real-world applications,” the researchers wrote in their preprint study, now available on the arXiv server.

The Cyborg Insect Factory

Diagram showing how the insects are attached to the electrodes creating a hybrid robot
Insect-computer hybrid robot and its automatic assembly setup. Credit: arXiv (2024).

Insect-computer hybrids, sometimes called biobots, have been the subject of research for years. The idea is simple: harness the natural mobility of insects and augment it with robotic control systems. Unlike fully mechanical robots, these hybrids don’t need complicated motors or large power supplies — they use the insects’ own legs and energy.

Cockroaches might not be the most beloved creatures, but their biology makes them ideal for this kind of work. Agile, lightweight, and capable of traversing complex terrain, they outperform even the most advanced biomimetic robots. Their natural resilience is complemented by their electronic upgrades, allowing precise remote control and even speed adjustments.

But, until now, creating these cyborg insects required delicate and time-consuming manual work. “The outcome of the surgery was highly influenced by the human’s operation,” the researchers wrote. This inconsistency made mass production impractical.

The new method pioneered in Singapore changes that. Using a robotic arm, a vision-guided system, and a set of tiny electrodes, the team can assemble a cyborg cockroach in just 68 seconds. The electrodes are implanted between the insect’s pronotum (the plate covering its thorax) and its mesothorax, which is near the cockroach’s nerve pathways that control its legs. When the electrodes receive electrical pulses, they stimulate these nerves.

Each cyborg cockroach is equipped with a lightweight backpack containing a communication system and electrical stimulators. A small jolt to one antenna directs the insect left; another sends it scurrying right.

These particular roaches, Gromphadorhina portentosa, have an added quirk: they hiss. By forcing air through tiny openings called spiracles, they produce sounds that can signal aggression or disturbance. It’s a dramatic touch to a creature that’s already upending expectations.

How It Works

The process starts by gently fixing the anesthetized cockroach in place and exposing the target area. A deep-learning algorithm then guides the robotic arm to precisely implant the electrodes. The electrodes are custom-designed to puncture the membrane and hook securely in place.

The robotic arm’s precision is of the utmost importance. Even slight variations in electrode placement could affect the cockroach’s response. By automating the process, the team eliminated these inconsistencies, ensuring each cyborg insect behaved predictably.

Tests showed the automatically assembled cyborgs performed just as well as those assembled by hand. They could turn left or right with angles of up to 80 degrees and decelerate by over 60 percent. In a field trial, a team of four cyborg cockroaches successfully navigated a small, obstacle-filled outdoor area, covering 80 percent of the terrain in just over ten minutes.

While the electrical pulses can direct the cockroach to turn or slow down, these commands don’t completely strip the insect of its autonomy. The cockroach’s own sensory system is still active, and it can respond to environmental cues. For example, if an obstacle appears in its path, the cockroach may still try to navigate around it naturally.

This partial control means the hybrid insects are not mindless robots — they are more like guided agents, blending the adaptability of living organisms with the precision of robotic systems. So, the electrodes act like suggestions rather than absolute commands, nudging the cockroach in a specific direction.

Automating the process opens the door to producing hundreds or even thousands of these hybrid creatures for missions like locating survivors in collapsed buildings or exploring hazardous environments.

But the work isn’t done yet. While these cyborgs can be steered remotely, managing swarms of them simultaneously remains a challenge. The researchers envision a future where such armies operate autonomously, requiring little human intervention.

A Step Towards Swarm Robotics

The concept of cyborg insects has sparked mixed reactions, ranging from amazement to unease. Some see them as a cutting-edge tool for disaster response, while others wrestle with the ethics of merging biology with technology. However, there are potential upsides to swarm robotics.

In a disaster scenario, dozens or even hundreds of these hybrid insects could be deployed to search through rubble, using their natural ability to squeeze through tight spaces.

Other potential uses include inspecting hard-to-reach areas in factories or exploring hazardous environments like collapsed mines. The researchers believe their method lays the groundwork for “scalable production and deployment in real-world applications.”

Still, ethical questions remain. As with any technology involving living organisms, the welfare of the insects is a concern. The team used anesthesia to minimize discomfort during the assembly process, but long-term impacts are less clear. There’s also the question of control: how much autonomy should these cyborg insects have, and what safeguards are needed?

share Share

This Moth’s Wings Create a Mind-Bending 3D Optical Illusion to Avoid Being Eaten

A moth's flat wings fool predators into seeing an inedible 3D leaf.

Scientists Just Linked Two Quantum Computers With "Quantum Teleportation" for the First Time and It Changes Everything

The future of computing might not be one giant quantum machine but many linked together.

Human-like Teeth Grown in Pigs Could Make Dental Implants a Thing of the Past

It's a glimpse into the future of tooth replacement.

Paleolithic culture cannibalized their enemies — and maybe their friends as well

In the 19th century, archaeologists in Poland unearthed a stunning cave filled with prehistoric secrets. The Maszycka Cave, as it’s called, once sheltered Magdalenian people 18,000 years ago. Now, a new study offers compelling evidence that the cave was the site of a grisly ritual — or perhaps something even darker. Did these ancient people […]

AI Is Supposed to Make You More Productive — It's Making You Dumber and Overconfident

Generative AI is supposed to make life easier. It drafts emails, summarizes documents, and even generates creative content, helping you offload some of that dreaded cognitive effort. But according to a new study from Carnegie Mellon University and Microsoft Research, it may also be making you dumber in the process. The study, based on a […]

Beavers Built a $1.2M Dam for Free — And Saved a Czech River

A Czech project that was stalled for years is now completed — by beavers.

A Single High Dose of Creatine Might Help the Brain to Power Through Sleep Deprivation

From the gym to your brain: the surprising new use of creatine.

A Spoonful of Peanut Butter Might Be the Key to Overcoming Peanut Allergies

A new study suggests that children with peanut allergies may be able to safely build tolerance through a simple, cost-effective treatment.

Inside China's 600 MPH Floating Train Faster Than a Boeing 737

It's basically a Hyperloop design on steroids.

Do the International Space Station Windows Need Cleaning? Here's how astronauts do it

Every now and then, space windows also have to be cleaned. When that happens, it's not an easy task.