homehome Home chatchat Notifications


This solar-powered device can squeeze water out of thin air -- 3 liters a day

You can't squeeze blood from a stone, but you can squeeze water from thin air -- even in the driest areas of the world.

Mihai Andrei
April 14, 2017 @ 2:47 pm

share Share

You can’t squeeze blood from a stone, but you can squeeze water from thin air — even in the driest areas of the world.

The new water harvester is made of metal organic framework crystals pressed into a thin sheet of copper metal and placed between a solar absorber (above) and a condenser plate (below). Image credits: Wang Laboratory / MIT.

The device you see above can produce nearly 3 liters of water per day, and researchers say they can make it work even better. The key to their success is a family of crystalline powders called metal organic frameworks, or MOFs. MOFs are compounds consisting of metal ions or clusters which form 2D or 3D structures. They are a special type of polymers, often porous. To the naked eye, they would look pretty much like sand, each granule riddled with holes into which gases and molecules of interest can be selectively allowed to pass or blocked. Then, they’re brought in and compacted, making it possible to store a lot of gas in small containers.

Omar Yaghi, a chemist at the University of California, Berkeley, first demonstrated MOFs 20 years ago. Since then, he and others have developed several types of applications for them, including membranes that absorb and later release methane, acting as a carbon tank for cars. In total, over 20,000 types of MOFs have been developed, but one, in particular, is extremely interesting.

In 2014, Yaghi and his colleagues synthesized an MOF that is extremely efficient at absorbing water from thin air, even under extremely low humidities (like those in the driest places on Earth) — now, they’ve taken it a step further. Working with Evelyn Wang, a mechanical engineer at the Massachusetts Institute of Technology (MIT) in Cambridge, he turned this idea into a functional device which basically harvests water from thin air.

In a study published in the journal Science, they describe the mechanism, showing that it can pull 2.8 liters of water from the air over 12 hours — even in conditions with 20 or 30 percent humidity.

“It has been a longstanding dream” to harvest water from desert air, says Mercouri Kanatzidis, a chemist at Northwestern University in Evanston, Illinois, who wasn’t involved with the work. “This demonstration … is a significant proof of concept.”

However, this is just a proof of concept, and they’re still a ways away from making it viable. For starters, the entire system relies on a zirconium-based MOF, and zirconium costs $150 a kilogram, making such water harvesting devices simply too expensive to work. The next step is to replace the expensive zirconium with the much cheaper aluminum.

This all-purpose solution could make a big difference for the millions of people living in water-deprived areas. According to UNICEF, 400 million children constantly deal with water scarcity. Other solutions have also been approached, but they typically require significant humidity in the air to work — this one works with almost no humidity. At this point, it’s not clear if a potential widespread deployment of such systems will have a collateral effect on the environment.

Image credits: Hyunho Kim et al — Water harvesting from air with metal-organic frameworks powered by natural sunlight. DOI: 10.1126/science.aam8743

 

share Share

AI 'Reanimated' a Murder Victim Back to Life to Speak in Court (And Raises Ethical Quandaries)

AI avatars of dead people are teaching courses and testifying in court. Even with the best of intentions, the emerging practice of AI ‘reanimations’ is an ethical quagmire.

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

This new blood test could find cancerous tumors three years before any symptoms

Imagine catching cancer before symptoms even appear. New research shows we’re closer than ever.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths