homehome Home chatchat Notifications


Record-breaking silicon solar cell efficiency of 26.6% demonstrated by Japanese researchers, very close to the theoretical limit

We're getting closer to the ideal silicon solar cell.

Tibi Puiu
March 24, 2017 @ 5:15 pm

share Share

Improving the efficiency of silicon-based solar cells has proven a challenge in the past couple of years as all the low-hanging fruits had been picked dry. That didn’t stop a team of Japanese researchers from Kaneka Corporation to push the envelope. They report a record-breaking efficiency of 26.3% beating the previous record of 25.6%. Most commercial-grade solar cells operate in the low-20-percent range. There are millions of solar panels in the world and by 2050 there could be billions. Even a fraction of a percent can add up to massive amounts of renewable electricity which is why such work is extremely important.

Silicon solar cell with 26.3% efficiency. Credit: Kaneka Corporation.

Silicon solar cell with 26.3% efficiency. Credit: Kaneka Corporation.

Close to an ideal solar cell

The theoretical limit for silicon solar cells is 29 to 30 percent silicon cells primarily capture the light waves from the red spectrum of sunlight while the rest of the spectrum is not utilized. The most efficient solar cells demonstrated thus far report efficiencies of 34.5% for unconcentrated sunlight and 46% in the case of multi-junction concentrator solar cells. These solar cells, however, aren’t based on silicon but exotic and sometimes toxic materials like indium-gallium-phosphide, indium-gallium-arsenide or germanium. Moreover, these cells can be very expensive which is why most utility scale as well as rooftop solar is made of silicon — an abundant material that has been used by the semiconductor industry for decades and can be cheaply sourced. It’s partly thanks to silicon that solar panels have become increasingly economically feasible. So much so that solar energy is now cheaper than fossil fuels in many parts of the globe, even without subsidies. 

At the same time, upping silicon efficiency can be challenging nowadays. The most recent record-breaking cell is a thin-film heterojunction (HJ) design where multiple bands of silicon are layered within the cell to minimize band gaps. To make the cells, a manufacturing process called plasma-enhanced chemical vapor deposition (PECVD) was used where thin films of silicon are deposited on a wafer from a gas state. It’s the same technique that Panasonic uses to manufacture panels for Tesla at the Solar City plant in Buffalo, says Megan Geuss from Ars Technica.

The team from Kaneka also placed low-resistance electrodes at the rear of the cells which maximize the number of captured photons collected by the cell from the front. Additionally, the top layer of the cell is coated with a layer of amorphous silicon as well as an anti-reflective layer that not only reduces maintenance but also helps collect more photons.

Tests which have been recognized by the National Renewable Energy Lab (NREL) suggest the Kaneka cell are 26.3 percent efficient. After publishing their paper in Nature Energy, Kaneka claims it managed to reach 26.6 percent efficiency.

Kaneka also quantified the energy losses that kept the cell from reaching its full 29 percent efficiency. The researchers conclude overall efficiency was reduced by 0.5% due to resistive losses, 1% from optical losses, and 1.2% to recombination losses. Nevertheless, we’re talking about a 2.7 percent increase in efficiency which can add up considerably.

 

share Share

New Liquid Uranium Rocket Could Halve Trip to Mars

Liquid uranium rockets could make the Red Planet a six-month commute.

Scientists think they found evidence of a hidden planet beyond Neptune and they are calling it Planet Y

A planet more massive than Mercury could be lurking beyond the orbit of Pluto.

People Who Keep Score in Relationships Are More Likely to End Up Unhappy

A 13-year study shows that keeping score in love quietly chips away at happiness.

NASA invented wheels that never get punctured — and you can now buy them

Would you use this type of tire?

Does My Red Look Like Your Red? The Age-Old Question Just Got A Scientific Answer and It Changes How We Think About Color

Scientists found that our brains process colors in surprisingly similar ways.

Why Blue Eyes Aren’t Really Blue: The Surprising Reason Blue Eyes Are Actually an Optical Illusion

What if the piercing blue of someone’s eyes isn’t color at all, but a trick of light?

Meet the Bumpy Snailfish: An Adorable, Newly Discovered Deep Sea Species That Looks Like It Is Smiling

Bumpy, dark, and sleek—three newly described snailfish species reveal a world still unknown.

Scientists Just Found Arctic Algae That Can Move in Ice at –15°C

The algae at the bottom of the world are alive, mobile, and rewriting biology’s rulebook.

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.