homehome Home chatchat Notifications


New solar power material converts 90 percent of captured light into heat

We keep hearing more about developments made in the photovoltaic field, but we have to keep in mind that this is not the only way in which solar energy can be harvested and used. A multidisciplinary engineering team at the University of California, San Diego developed a new nanoparticle-based material for concentrating solar power plants, absorbing […]

Mihai Andrei
November 4, 2014 @ 12:56 am

share Share

We keep hearing more about developments made in the photovoltaic field, but we have to keep in mind that this is not the only way in which solar energy can be harvested and used. A multidisciplinary engineering team at the University of California, San Diego developed a new nanoparticle-based material for concentrating solar power plants, absorbing and converting 90 percent of the captured light into heat.

solar energy

Engineers at UC San Diego have developed a nanoparticle-based material for concentrating solar power plants that converts 90% of captured sunlight to heat while also withstanding temperatures of up to 700 degrees Celsius. Image credits: Renkun Chen, mechanical engineering professor, UC San Diego Jacobs School of Engineering.

The technology works more like a coal factory than photovoltaics, which also means that it would be easier to convert current infrastructure and adapt it to go green. The cost of this energy is about the same as the cheap natural gas, but the technology is renewable and causes virtually no CO2 emissions. Furthermore, it’s also a fairly new technology, which means there’s plenty of room for even more improvements. The material they are using now can also withstand temperatures greater than 700 degrees Celsius and survive many years outdoors in spite of exposure to air and humidity.

By contrast, previous materials used for this purpose were not really resilient and needed constant overhauls for high temperatures.

“We wanted to create a material that absorbs sunlight that doesn’t let any of it escape. We want the black hole of sunlight,” said Sungho Jin, a professor in the department of Mechanical and Aerospace Engineering at UC San Diego Jacobs School of Engineering.

The novel development is a “multiscale” surface created by using particles of many sizes ranging from 10 nanometers to 10 micrometers. The surface makes it so that it absorbs more light and also ensures stability at higher temperatures.

Graduate student Bryan VanSaders measures how much simulated sunlight a novel material can absorb using a unique set of instruments that takes spectral measurements from visible to infrared. This testing is led by electrical engineering professor Zhaowei Liu. Credit: David Baillot/UC San Diego Jacobs School of Engineering.

Concentrating solar power (CSP) is an emerging alternative clean energy market that produces approximately 3.5 gigawatts worth of power at power plants around the globe – but the technology is only in its emerging years, so we can expect massive growth in future years.

I was saying above that it works in a similar way to coal plants. In coal plants, coal (or other fossil fuels) heat up water which creates steam. The steam turns a giant turbine that generates electricity from spinning magnets and conductor wire coils. The CSP does the same thing, except it heats molten salt. This way, you use much more energy than with photovoltaics, and another advantage is that the molten salt can also be stored in thermal storage tanks overnight where it can continue to generate steam and electricity during the night.

The most common approach is to set up a huge mirror array, with as much as 100,000 highly reflective mirrors to reflect sunlight towards a tower painted with light absorbing paint. The problem, as you might have guessed, is that the tower gets very hot – and this is where this material steps in.

The interdisciplinary San Diego team spent three years working on this material, but the results are indeed spectacular.

Current CSP plants are shut down about once a year to chip off the degraded sunlight absorbing material and reapply a new coating – which means not only do you have a periodic, significant downtime period, but you also have increased costs and carbon footprint. I for one am looking forward to seeing this technology applied at a larger scale – I feel like it’s this type of renewable energy which can make a huge difference.

share Share

The Universe’s First “Little Red Dots” May Be a New Kind of Star With a Black Hole Inside

Mysterious red dots may be a peculiar cosmic hybrid between a star and a black hole.

Peacock Feathers Can Turn Into Biological Lasers and Scientists Are Amazed

Peacock tail feathers infused with dye emit laser light under pulsed illumination.

Helsinki went a full year without a traffic death. How did they do it?

Nordic capitals keep showing how we can eliminate traffic fatalities.

Scientists Find Hidden Clues in The Alexander Mosaic. Its 2 Million Tiny Stones Came From All Over the Ancient World

One of the most famous artworks of the ancient world reads almost like a map of the Roman Empire's power.

Ancient bling: Romans May Have Worn a 450-Million-Year-Old Sea Fossil as a Pendant

Before fossils were science, they were symbols of magic, mystery, and power.

This AI Therapy App Told a Suicidal User How to Die While Trying to Mimic Empathy

You really shouldn't use a chatbot for therapy.

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

Why You Should Stop Using Scented Candles—For Good

They're seriously not good for you.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

To Fight Invasive Pythons in the Everglades Scientists Turned to Robot Rabbits

Scientists are unleashing robo-rabbits to trick and trap giant invasive snakes