homehome Home chatchat Notifications


Scientists create better, cheaper perovskite crystals

Researchers at Brown University have found a cheaper and easier way to create hybrid perovskites, enabling engineers to develop more affordable and efficient solar cells. Perovskite is a calcium titanium oxide mineral composed of calcium titanate (CaTiO3). The mineral has received much attention in recent years as artificial perovskite crystals have increasingly been used in solar cells. Perovskite films in solar cells are excellent light absorbers, but they until now, they were more expensive to fabric and only created small crystals.

Mihai Andrei
March 17, 2015 @ 2:54 am

share Share

Researchers at Brown University have found a cheaper and easier way to create hybrid perovskites, enabling engineers to develop more affordable and efficient solar cells.

 

Credit: Padture Lab / Brown University.

Perovskite is a calcium titanium oxide mineral composed of calcium titanate (CaTiO3). The mineral has received much attention in recent years as artificial perovskite crystals have increasingly been used in solar cells. Perovskite films in solar cells are excellent light absorbers, but they until now, they were more expensive to fabric and only created small crystals.

“People have made good [perovskite] films over relatively small areas – a fraction of a centimeter or so square,” says researcher Nitin Padture, a professor of engineering.

However, the research team developed a new technique, which only requires a room-temperature solvent bath to create perovskite crystals, rather than the blast of heat used in current crystallization methods.

The high temperature process involved temperatures of 100-150 degrees Celsius (212-302 Fahrenheit) and this also limited the kinds of substrates films can be deposited on. For example, plastics would make an excellent substrate, but you can’t really place these hot films on plastic because they’d just melt the plastic. The heat also created a tendency for crystals to form unevenly with tiny pinholes throughout the resulting film, which can reduce the efficiency of solar cells.

Yuanyuan Zhou, a graduate student in Padture’s lab, wanted to see if he could create perovskite crystals without having to use high temperatures and he came up with a solvent-solvent extraction method (SSE). He basically took the materials needed to create the crystals and dissolved them in a solvent called N-Methyl-2-pyrrolidone (NMP). Then, instead of heating, the substrate is bathed in a second solvent, diethyl ether (DEE). DEE selectively grabs the NMP and washes it away, and leaves behind a smooth film of perovskite crystals – exactly what researchers wanted to see. The entire process takes less than two minutes, it’s really cheap, and the crystals can be applied to any substrate. The SSE approach also ensures a very high quality and eliminates unwanted holes in the material.

“Using the other methods, when the thickness gets below 100 nanometers you can hardly make full coverage of film,” Zhou said. “You can make a film, but you get lots of pinholes. In our process, you can form the film evenly down to 20 nanometers because the crystallization at room temperature is much more balanced and occurs immediately over the whole film upon bathing.”

To make things even better, the new films are transparent, so we could be having transparent windows generating energy pretty soon. Zhou has also been able to make cells in different colors, to be used for decorative purposes. What I personally like a lot about this study is that unlike most solar cell developments which are strictly lab innovations and can take years to develop into something useful, this actually has the potential of becoming big soon.

“We think this could be a significant step toward a variety of commercially available perovskite cell products,” Padture said.

Journal Reference: Journal of Materials Chemistry A.

share Share

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.

How Much Does a Single Cell Weigh? The Brilliant Physics Trick of Weighing Something Less Than a Trillionth of a Gram

Scientists have found ingenious ways to weigh the tiniest building blocks of life

A Long Skinny Rectangular Telescope Could Succeed Where the James Webb Fails and Uncover Habitable Worlds Nearby

A long, narrow mirror could help astronomers detect life on nearby exoplanets

Scientists Found That Bending Ice Makes Electricity and It May Explain Lightning

Ice isn't as passive as it looks.

The Crystal Behind Next Gen Solar Panels May Transform Cancer and Heart Disease Scans

Tiny pixels can save millions of lives and make nuclear medicine scans affordable for both hospitals and patients.

Satellite data shows New York City is still sinking -- and so are many big US cities

No, it’s not because of the recent flooding.

How Bees Use the Sun for Navigation Even on Cloudy Days

Bees see differently than humans, for them the sky is more than just blue.

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

A single photonic chip for all future wireless communication.

This Teen Scientist Turned a $0.50 Bar of Soap Into a Cancer-Fighting Breakthrough and Became ‘America’s Top Young Scientist’

Heman's inspiration for his invention came from his childhood in Ethiopia, where he witnessed the dangers of prolonged sun exposure.