homehome Home chatchat Notifications


Canadian fish know how to party: getting high on cocaine

New research shows that wastewater discharged from wastewater treatment plants in the Grand River watershed of southern Ontario has the potential to contaminate sources of drinking water with drugs such as cocaine, morphine and oxycodone.

Alexandru Micu
July 25, 2015 @ 7:48 am

share Share

Both prescription and illegal drugs such as morphine, cocaine and oxycodone have been found in surface waters in Canadian rivers. New research shows that wastewater discharged from wastewater treatment plants in the Grand River watershed of southern Ontario has the potential to contaminate sources of drinking water with these drugs.

Looking for traces of illegal drugs in water.
Credit: McGill University

The study, published in Environmental Toxicology & Chemistry, shows that while such substances are found in relatively limited quantities, their concentrations remained constant downstream from the source – a water treatment plant discharge.

The water treatment plant removes the bulk of contaminants from wastewater coming from a wide range of sources, be it households or chemical plants, before discharging it into the river. Further down, a drinking water treatment plant then further treats the water prior to consumption.

“Improving our wastewater treatment processes can help clean up our drinking water,” said lead author Prof. Viviane Yargeau, of McGill’s Department of Chemical Engineering. “While previous studies have shown that there are trace elements of various chemicals that remain in our drinking water, what is novel about this research is that we looked at the chemicals that are found in the water course between the wastewater treatment plant and the drinking water treatment plant. And what we found has some disturbing implications for the aquatic environment.”

“These results demonstrated a link between wastewater plant discharges and quality of potable water sources,” he added. “Although drinking water treatment plants remove most of the contaminants found in our drinking water, we believe that if improvements are made to wastewater treatment plants to protect the sources of drinking water, this will prove a more effective way of dealing with the problem in the long run — as this strategy would also protect the aquatic environment and all the plants, insects and fish that are found there.”

The next stage in Prof. Yargeau’s research will be a five-year project to look into how improvements of wastewater treatment and natural processes along rivers impact the presence of contaminants of concern in our drinking water.

share Share

Peacock Feathers Can Turn Into Biological Lasers and Scientists Are Amazed

Peacock tail feathers infused with dye emit laser light under pulsed illumination.

Helsinki went a full year without a traffic death. How did they do it?

Nordic capitals keep showing how we can eliminate traffic fatalities.

Scientists Find Hidden Clues in The Alexander Mosaic. Its 2 Million Tiny Stones Came From All Over the Ancient World

One of the most famous artworks of the ancient world reads almost like a map of the Roman Empire's power.

Ancient bling: Romans May Have Worn a 450-Million-Year-Old Sea Fossil as a Pendant

Before fossils were science, they were symbols of magic, mystery, and power.

This AI Therapy App Told a Suicidal User How to Die While Trying to Mimic Empathy

You really shouldn't use a chatbot for therapy.

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

Why You Should Stop Using Scented Candles—For Good

They're seriously not good for you.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

To Fight Invasive Pythons in the Everglades Scientists Turned to Robot Rabbits

Scientists are unleashing robo-rabbits to trick and trap giant invasive snakes

Lab-Grown Beef Now Has Real Muscle Fibers and It’s One Step Closer to Burgers With No Slaughter

In lab dishes, beef now grows thicker, stronger—and much more like the real thing.