homehome Home chatchat Notifications


Scientists may have found how migrating birds sense Earth’s magnetic field

No GPS needed -- just use quantum chemistry.

Fermin Koop
June 25, 2021 @ 8:51 am

share Share

Birds migrate thousands of miles without a GPS, using the Earth’s magnetic field to orient themselves. It’s been a long mystery how they were able to do this, but now, scientists may have found the key reason behind it: a molecule in the eye that’s sensitive to magnetism and gives birds a working internal compass. 

Image credit: Flickr / Piplongstockings

Quantum birds

A group of biologists, chemists, and physicists tested a 40-years old theory according to which a light-sensitive molecule interacts with the Earth’s magnetic field via a quantum chemical process. To do this, they looked at a light-sensitive protein called cryptochrome 4 (CRY4) from the retina of European robins (Erithacus rubecula).

“We think we may have identified the molecule that allows small migratory songbirds to detect the direction of the Earth’s magnetic field, which they undoubtedly can do, and use that information to help them navigate when they migrate thousands of kilometres,” Peter Hore, researcher and co-author of the paper, told BBC News.

European robins live throughout Europe, Russia and western Siberia. Some migrate south every northern hemisphere winter, for example from Scandinavia to the United Kingdom, and return in spring. Many migrating robins are faithful to both their summer and winter territories, which may be many hundreds of kilometers apart.

Previous studies have shown that certain species of birds use Earth’s magnetic fields when they migrate. Suspicion had fallen on the CRY4, a light-sensitive protein, and the first one identified in animals that evolved specifically to detect magnetic fields. It’s part of a class of proteins known as cryptochromes, involved in the workings of circadian rhythms.  

Now, researchers managed to isolate the molecule from robins and showed that it is sensitive to magnetic fields. In the presence of light, electrons can jump between different parts of CRY4 and between it and another molecule called flavin adenine dinucleotide (FAD), ultimately leading to the production of a compound called CRY4-FADH. 

Changes in the level of the compound may allow light-sensitive cells in the eye to alter their output, making the view lighter or darker, depending on the direction and strength of the magnetic field in the bird’s field of vision, Henrik Mouritsen, co-author, told New Scientist. “You may be able to see where north is as kind of a shading on whatever else you would be seeing,” he said. 

For comparison, the researchers also looked at CRY4 proteins from chickens and pigeons, which are not migratory birds, but do contain this light-sensitive protein. Each species has a slightly different version of the molecule, and the team found that these two are less affected by magnetism. This suggests that the version of the molecule in migratory birds has been fine-tuned to amplify its sensitivity.

While the findings are exciting, the study hasn’t demonstrated that CRY4 is being used for magnetic sensing in real life. The researchers only looked at this molecule in isolation. Nevertheless, the fact that the molecule is more magnetically-sensitive in robins than in birds such as chickens that don’t migrate makes them optimistic about their findings. 

The study was published in the journal Nature. 

share Share

This New Atomic Clock Is So Precise It Won’t Lose a Second for 140 Million Years

The new clock doesn't just keep time — it defines it.

A Soviet shuttle from the Space Race is about to fall uncontrollably from the sky

A ghost from time past is about to return to Earth. But it won't be smooth.

The world’s largest wildlife crossing is under construction in LA, and it’s no less than a miracle

But we need more of these massive wildlife crossings.

Your gold could come from some of the most violent stars in the universe

That gold in your phone could have originated from a magnetar.

Ronan the Sea Lion Can Keep a Beat Better Than You Can — and She Might Just Change What We Know About Music and the Brain

A rescued sea lion is shaking up what scientists thought they knew about rhythm and the brain

Did the Ancient Egyptians Paint the Milky Way on Their Coffins?

Tomb art suggests the sky goddess Nut from ancient Egypt might reveal the oldest depiction of our galaxy.

Dinosaurs Were Doing Just Fine Before the Asteroid Hit

New research overturns the idea that dinosaurs were already dying out before the asteroid hit.

Denmark could become the first country to ban deepfakes

Denmark hopes to pass a law prohibiting publishing deepfakes without the subject's consent.

Archaeologists find 2,000-year-old Roman military sandals in Germany with nails for traction

To march legionaries across the vast Roman Empire, solid footwear was required.

Mexico Will Give U.S. More Water to Avert More Tariffs

Droughts due to climate change are making Mexico increasingly water indebted to the USA.