homehome Home chatchat Notifications


Team develops side-illuminated ultra efficient solar cell design

The new architecture, depicted in the picture below can exceed a 40 percent conversion efficiency, and even when irradiated from the side it generates solar conversion efficiencies that rival, and may eventually surpass, even the most ultra-efficient photovolataics. The new cell was developed by researchers working on the David Ben-Gurion National Solar Research Center, and […]

Mihai Andrei
November 8, 2012 @ 6:48 am

share Share

The new architecture, depicted in the picture below can exceed a 40 percent conversion efficiency, and even when irradiated from the side it generates solar conversion efficiencies that rival, and may eventually surpass, even the most ultra-efficient photovolataics.

The new cell was developed by researchers working on the David Ben-Gurion National Solar Research Center, and they can reach and even surpass the already traditional landmark: 40 percent conversion efficiency with intensities equal to 10,000 suns.

“Typically a concentrator solar cell comprises interdependent stacked materials connected in series, with significant associated fabrication difficulties and efficiency limitations,” explains Prof. Jeffrey Gordon, a member of the Department of Solar Energy and Environmental Physics at BGU’s Jacob Blaustein Institutes for Desert Research. Our new designs for concentrator photovoltaic cells comprise multiple tiers of semiconductor materials that are totally independent, and overcome numerous challenges in compiling the elements of even the most efficient solar cells,” he says.

But perhaps the most important thing in this new design is that they managed to put to use materials which had previously been deemed unsuitable for the task, such as silicone. Tailoring the cells to edge (side) illumination reduces the cell internal resistance to negligible levels.

“Our future depends on the development of alternative energies, and BGU is leading the way in this field,” explains Doron Krakow, executive vice president of American Associates, Ben- Gurion University of the Negev (AABGU). “Prof. Gordon and his colleagues in BGU’s Energy Initiative continue to bring new innovations that will impact our world for the better.”

Via Physorg

share Share

The AI Boom Is Thirsty for Water — And Communities Are Paying the Price

What if the future of artificial intelligence depends on your town running out of water?

Nearly Three-Quarters of New Solar and Wind Projects Are Being Built in China

China is driving a global shift in energy with a record-breaking expansion of solar and wind power.

Over 90% of global renewable power projects are now cheaper than fossil fuels

Solar is 40% cheaper, and onshore wind is under half the price.

This New Bioplastic Is Clear Flexible and Stronger Than Oil-Based Plastic. And It’s Made by Microbes

New material mimics plastic’s versatility but biodegrades like a leaf.

For the first time in history, solar was Europe's top source of electricity

Europe is quietly becoming a solar powerhouse.

The World’s Largest Sand Battery Just Went Online in Finland. It could change renewable energy

This sand battery system can store 1,000 megawatt-hours of heat for weeks at a time.

Scientists Turn Timber Into SuperWood: 50% Stronger Than Steel and 90% More Environmentally Friendly

This isn’t your average timber.

These Bacteria Exhale Electricity and Could Help Fight Climate Change

Some E. coli can survive by pushing out electrons instead of using oxygen

Sinking Giant Concrete Orbs to the Bottom of the Ocean Could Store Massive Amounts of Renewable Energy

These underwater batteries could potentially store hundreds of thousands of gigawatt-hours.

Hidden Communication Devices Found in Chinese-Made Inverters Could Put U.S. Electrical Grid at Risk

U.S. experts uncover rogue communication devices inside solar inverters and batteries