homehome Home chatchat Notifications


Termites can hold back deserts by creating oases of plant life

We tend to think of termites as pests, but the tiny insects actually play a crucial environmental role, at least in some areas. New research suggests that termite mounds are crucial to stopping the spread of deserts and preserving the vegetation and climate. The results indicate that termite mounds can not only to stop desertification, but […]

Dragos Mitrica
February 9, 2015 @ 5:32 am

share Share

We tend to think of termites as pests, but the tiny insects actually play a crucial environmental role, at least in some areas. New research suggests that termite mounds are crucial to stopping the spread of deserts and preserving the vegetation and climate. The results indicate that termite mounds can not only to stop desertification, but also encourage vegetation to expand into deserts.

Termite mounds can be up over 5 meters high and have 30 meters in diameter. They are also very complex and allow water to better permeate the soil, fighting desertification Image via PBS.

Related to cockroaches, termites have a spectacular evolutionary history and are very organized, but are generally regarded as pests – causing structural damage to wooden parts in buildings. But in the savannas and drylands of Africa, South America and Asia, termite mounds are extremely useful, storing nutrients and moisture, allowing water to better penetrate the soil. As a result, vegetation thrives around them and creates ecosystems which couldn’t otherwise exist.

Corresponding author Corina Tarnita, a Princeton assistant professor in ecology and evolutionary biology, explained that termite mounds also preserve seeds and plant life, which helps surrounding areas rebound faster once rainfall resumes.

“The rain is the same everywhere, but because termites allow water to penetrate the soil better, the plants grow on or near the mounds as if there were more rain,” Tarnita said. “The vegetation on and around termite mounds persists longer and declines slower,” she said. “Even when you get to such harsh conditions where vegetation disappears from the mounds, re-vegetation is still easier. As long as the mounds are there the ecosystem has a better chance to recover.”

Desertification is generally regarded as a type of land degradation in which a relatively dry land region becomes increasingly arid, typically losing its bodies of water as well as vegetation and wildlife. Desertification is typically caused by climate change and/or human activities and is a significant global ecological and environmental problem.

Image via Wiki Commons.

Researchers have proposed several mechanisms to halt or at least stall desertification, but as usually, nature provides the best solutions in this case. Jef Huisman, an aquatic microbiology professor and theoretical ecologist at the University of Amsterdam in the Netherlands believes that the desertification process is much more complicated than previous models suggested. For example, the biological activity (like that of termites or mussels) that can “engineer” the environment is often times overlooked.

“This phenomenon and these patterned landscape features are common. It’s not always termites causing them, but they may very well have similar effects on the ecosystem,” Pringle said. “However, exactly what each type of animal does to the vegetation is hard to know in advance. You’d have to get into a system and determine what is building the mounds and what are the properties of the mounds.”

The research was conducted on several fields, in a truly interdisciplinary fashion – as it should be, when dealing with complex environmental issues.

“It’s a great example of interdisciplinary synergy,” Tarnita said. “The team effort was really crucial to this work — each co-author played a vital role. The study started with the theory, which began with discussions between Rob [Pringle] and me and later with input from Kelly [Caylor] and Simon [Levin]. It really took shape once Juan [Bonachela] started to analyze the model and the results were validated with the empirical data collected by Jen [Guyton] and Tyler [Coverdale], and analyzed by Efrat [Sheffer].”

Journal Reference: Elizabeth G. Pringle, Erol Akçay, Ted K. Raab, Rodolfo Dirzo, Deborah M. Gordon. Water Stress Strengthens Mutualism Among Ants, Trees, and Scale Insects. DOI: 10.1371/journal.pbio.1001705

share Share

The World’s Largest Sand Battery Just Went Online in Finland. It could change renewable energy

This sand battery system can store 1,000 megawatt-hours of heat for weeks at a time.

A Hidden Staircase in a French Church Just Led Archaeologists Into the Middle Ages

They pulled up a church floor and found a staircase that led to 1500 years of history.

The World’s Largest Camera Is About to Change Astronomy Forever

A new telescope camera promises a 10-year, 3.2-billion-pixel journey through the southern sky.

AI 'Reanimated' a Murder Victim Back to Life to Speak in Court (And Raises Ethical Quandaries)

AI avatars of dead people are teaching courses and testifying in court. Even with the best of intentions, the emerging practice of AI ‘reanimations’ is an ethical quagmire.

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.