homehome Home chatchat Notifications


Researchers look into reviving bleached corals using 'non-preferred' algal symbiotes

"We want to know if it's possible that more heat tolerant, non-preferred algae could revive bleached coral communities even if the relationship is less efficient," the authors say.

Alexandru Micu
June 20, 2019 @ 7:45 pm

share Share

New research is looking into what makes algae ‘move in’ with their coral hosts — and why the partnership can turn sour, both under normal conditions and when temperatures increase.

Coral polyp.

Coral polyps extending to feed.
Image credits Егор Камелев.

What we know as corals aren’t really alive. They are large exoskeletons built by tiny animals called polyps. Tiny but industrious, these polyps work tirelessly to create the world’s wonderfully colorful coral reefs. A polyp has a sac-like body that ends in a mouth crowned with stinging tentacles called nematocysts (or cnidae). These animals filter calcium and carbonate ions from seawater that they combine to form the limestone (calcium carbonate) they use to build corals that protect their soft, defenseless bodies. If you ever get a chance to visit a coral reef at night, you’ll see these polyps extend their tentacles out to feed.

However, none of this would be possible without the help of various species of single-celled algae we call zooxanthellae, a type of dinoflagellate. These algae live in symbiosis with the polyps, taking up residence inside their cells in a mutually-beneficial relationship: the algae produce nutrients via photosynthesis, while polyps supply the raw materials. The algae are also what gives coral their dazzling colors, which brings us neatly to the subject of:

Bleaching

Warmer mean ocean temperatures (due to anthropic climate change) can apply so much thermal stress on the polyps that they ‘evict’ their symbiotic bacteria in a phenomenon called bleaching. We refer to it this way because, as the algae get expelled, the coral skeletons revert to their natural color: bone-white. If the bleached coral is not recolonized with new algae soon, however, it can die.

“We’re interested in understanding the cellular processes that maintain those preferential relationships,” says Arthur Grossman from the Carnegie Institution for Science, one of the paper’s co-authors.

“We also want to know if it’s possible that more heat tolerant, non-preferred algae could revive bleached coral communities even if the relationship is less efficient.”

The team focused on sea anemones, which are actually closely related to coral (they’re both part of the phylumCnidaria). Sea anemones also host algae, but are easier to work with than corals. The researchers looked at the differences in cellular function that occur when Exaiptasia pallida, a type of anemone, is colonized by two different types of algae — one native strain that is susceptible to thermal bleaching (Breviolum minutum), the other non-native but more resistant to heat (Durusdinium trenchii).

“In this study we hoped to elucidate proteins that function to improve nutrient exchange between the anemone and its native algae and why the anemone’s success is compromised when it hosts the non-native heat resistant algae,” Grossman said.

The anemones colonized by the native algae strain expressed heightened levels of proteins associated with the metabolism of organic nitrogen and lipids. Both are nutrients that get synthesized through the algae’s photosynthetic activity. These anemones also synthesized a protein called NPC2-d, which is believed to underpin the cnidarians’ ability to take in algae and recognize them as a symbiotic partner.

Anemones colonized by non-native algae species expressed proteins associated with stress, the team explains. This is likely indicative of a less-than-ideal integration between the metabolisms of the two organisms, they add.

“Our findings open doors to future studies to identify key proteins and cellular mechanisms involved in maintaining a robust relationship between the alga and its cnidarian host and the ways in which the metabolism of the organisms are integrated,” Grossman concluded.

The results can be used to further our understanding of the biochemical mechanisms that facilitate successful interactions between algae species and the corals that house them. Researchers can explore the metabolic pathways identified in this study to potentially find ways to merge corals with more heat-resistant species — all in a bid to help them both survive in the warmer world we’re creating on Earth.

The paper “Proteomics quantifies protein expression changes in a model cnidarian colonised by a thermally tolerant but suboptimal symbiont” has been published in the journal Nature.

share Share

This Film Shaped Like Shark Skin Makes Planes More Aerodynamic and Saves Billions in Fuel

Mimicking shark skin may help aviation shed fuel—and carbon

China Just Made the World's Fastest Transistor and It Is Not Made of Silicon

The new transistor runs 40% faster and uses less power.

Ice Age Humans in Ukraine Were Masterful Fire Benders, New Study Shows

Ice Age humans mastered fire with astonishing precision.

The "Bone Collector" Caterpillar Disguises Itself With the Bodies of Its Victims and Lives in Spider Webs

This insect doesn't play with its food. It just wears it.

University of Zurich Researchers Secretly Deployed AI Bots on Reddit in Unauthorized Study

The revelation has sparked outrage across the internet.

Giant Brain Study Took Seven Years to Test the Two Biggest Theories of Consciousness. Here's What Scientists Found

Both came up short but the search for human consciousness continues.

The Cybertruck is all tricks and no truck, a musky Tesla fail

Tesla’s baking sheet on wheels rides fast in the recall lane toward a dead end where dysfunctional men gather.

British archaeologists find ancient coin horde "wrapped like a pasty"

Archaeologists discover 11th-century coin hoard, shedding light on a turbulent era.

The Fat Around Your Thighs Might Be Affecting Your Mental Health

New research finds that where fat is stored—not just how much you have—might shape your mood.

Astronauts May Soon Eat Fresh Fish Farmed on the Moon

Scientists hope Lunar Hatch will make fresh fish part of space missions' menus.