homehome Home chatchat Notifications


Bees can defend themselves against some neonicotinoid pesticides

A new way to make pesticides more bee-friendly.

Elena Motivans
March 22, 2018 @ 6:02 pm

share Share

Neonicotinoids are a hot topic—the pesticides have been shown to be toxic to bees, which are essential for pollinating the crops in the first place. To harm bees while protecting crops from pests is counterproductive, of course. There is a strong commercial interest in protecting bees as well—to have a good public image and a product that farmers will buy. Researchers from Bayer AG, a company which produces neonicotinoid insecticides, the University of Exeter, and Rothamsted Research have discovered how bees are able to defend themselves against some neonicotinoids. The study was published in the journal Current Biology.

Pesticides and their effect on bees are a hot topic. Image credits: greensefa.

The differences in sensitivity that bees show toward pesticides stem from how these chemicals are broken down by the metabolic enzymes that the bees use in defense against toxins.

“Honeybees are more than 1,000 times less sensitive to the neonicotinoid thiacloprid than imidacloprid, with the latter classified as ‘highly toxic’ but the former categorized as only ‘slightly toxic’ or ‘practically non-toxic’ according to the official categories of the US Environmental Protection Agency,” says Chris Bass from the University of Exeter, United Kingdom. “By utilizing genomic information and state-of-the-art molecular and biochemical techniques, we show that in both honeybees and bumble bees, this selectivity is determined by closely related enzymes, which rapidly break down thiacloprid before it impacts the bee nervous system. Those same enzymes have little to no capacity to break down imidacloprid–thus explaining the differences in bee sensitivity to these compounds.”

The enzymes that the bees use for defense are called cytochrome P450s. The researchers treated bees with a chemical used to block the function of P450 enzymes, causing the bees become much more sensitive to thiacloprid, but they were about the same to imidacloprid.

Bees in front of a beehive. Image credits: Bayer Bee Care Center.

The researchers then created genetically modified fruit flies, which expressed the different bees’ P450 enzymes. By testing these fruit flies, the researchers found one key P450 enzyme called CYP9Q3 that makes honey bees tolerant to thiacloprid. Bumblebees have a closely related P450 enzyme called CYP9Q4, which performs the same function.

“We identified the same enzyme subfamily degrading thiacloprid in two different bee pollinator species, which raises hope that the mechanism is evolutionarily conserved among other bee pollinators,” Lin Field of Rothamsted Research says. “We also found that these key enzymes are expressed at particularly high levels in Malpighian tubules–the insect equivalent of kidneys–and/or the brain where neonicotinoid insecticides act.”

Already, these findings make it easier to identify strategies that can protect the bees. Screening tests could be used to identify chemicals that can be broken down by bees. Additionally, some other preventative measures can be taken. For example, some fungicides inhibit P450 enzymes so they should not be used alongside neonicotinoids.

It has been difficult to design pesticides that don’t kill bees, because the same protein functions are well conserved across all arthropods. It is for this reason that pesticides can have the unintended consequence of killing arthropods in the soil, air, and water, regardless of whether they are pests or not. It is a positive sign that there is a pathway in bees that can protect them against certain pesticides.

Current Biology, Manjon, Troczka, and Zaworra et al.: “Unravelling the Molecular Determinants of Bee Sensitivity to Neonicotinoid Insecticides” http://www.cell.com/current-biology/fulltext/S0960-9822(18)30230-6

share Share

Coolness Isn’t About Looks or Money. It’s About These Six Things, According to Science

New global study reveals the six traits that define coolness around the world.

Ancient Roman Pompeii had way more erotic art than you'd think

Unfortunately, there are few images we can respectably share here.

Wild Orcas Are Offering Fish to Humans and Scientists Say They May Be Trying to Bond with Us

Scientists recorded 34 times orcas offered prey to humans over 20 years.

No Mercury, No Cyanide: This is the Safest and Greenest Way to Recover Gold from E-waste

A pool cleaner and a spongy polymer can turn used and discarded electronic items into a treasure trove of gold.

This $10 Hack Can Transform Old Smartphones Into a Tiny Data Center

The throwaway culture is harming our planet. One solution is repurposing billions of used smartphones.

Doctors Discover 48th Known Blood Group and Only One Person on Earth Has It

A genetic mystery leads to the discovery of a new blood group: “Gwada negative.”

More Than Half of Intersection Crashes Involve Left Turns. Is It Time To Finally Ban Them?

Even though research supports the change, most cities have been slow to ban left turns at even the most congested intersections.

A London Dentist Just Cracked a Geometric Code in Leonardo’s Vitruvian Man

A hidden triangle in the vitruvian man could finally explain one of da Vinci's greatest works.

Glass bottles shed up to 50 times more microplastics into drinks than plastic or cans -- and the paint on the cap may be to blame

Glass bottles may surprisingly release more plastic particles than plastic ones.

The Story Behind This Female Pharaoh's Broken Statues Is Way Weirder Than We Thought

New study reveals the ancient Egyptian's odd way of retiring a pharaoh.