homehome Home chatchat Notifications


CRISPR used for first time to change flower color in Japanese ornamental plant

A popular Japanese flower was used to demonstrate the power of CRISPR.

Tibi Puiu
September 5, 2017 @ 2:31 pm

share Share

With the help of the mighty CRISPR gene editing tool, scientists changed the flower color of a traditional Japanese garden plant from violet to white. The alteration was so precise only a single gene disruption was enough to introduce this effect. Such experiments highlight the tremendous potential of manipulating genes in horticultural plants.

Credit: University of Tsukuba.

Credit: University of Tsukuba.

The Japanese morning glory (Ipomoea nil or Pharbitis nil) has been a cherished flower since days of old. You can see it everywhere in Japan during summers and ever since the late Edo era (early 19th century), breeders took pleasure in creating diverse new leaves and flowers. The story of the Japanese morning glory started much earlier though, in the 8th century AD, with the introduction of wild blue-flowered plants into Japan from China.

Now, a collaborative team comprised of researchers at the University of Tsukuba, the National Agriculture and Food Research Organization (NARO) and Yokohama City University demonstrated how to alter the morning glory’s flowers in one elegant blow.

They targetted a single gene called DFR-B which encodes the anthocyanin biosynthesis enzyme responsible for the coloring for the plant’s stems, leaves, and flowers. Right next to this gene lie two closely related genes (DFR-A and DRF-C) which made it challenging to accurately target DFR-B without touching its neighbors.

Luckily, CRISPR, sometimes referred to as a molecular scissor, was up to the challenge. CRISPR/Cas9, short for Clustered Regularly Interspaced Short Palindromic Repeats is an immensely powerful tool that easily allows scientists to study and alter the genes of organisms. It’s composed of two molecules that can alter a DNA sequence while the CAS9 enzyme, guided by gRNA, cuts the DNA strand in a precise location. This way DNA can be added or removed with laser precision.

Disrupting the DFR-B deactivates the encoded enzyme, resulting in the absence of the color pigment anthocyanin. The Japanese researchers inserted the CRISPR/Cas9 system into tissue-cultured embryos of Japanese morning glory plants with the help of the DNA-transferring properties of the Rhizobium plant bacterium.

Around 75 percent of the transgenic plants had green stems and white flowers instead of the characteristic violet. Subsequent genetic sequencing confirmed that the DNA target sequence was altered, all while DFR-A and DFR-C remained unaltered.

An intriguing twist occurred when the scientists examined the inheritance of the CRISPR-induced mutations in next generation plants. Among these plants, there were some that presented no sign of introduced foreign DNA. Right now, next-generation plants are considered transgenic based on how they were made (process-based definition) while non-transgenic are define by the presence of foreign DNA in the final product. This may raise an interesting debate around the regulation of GMOs.

In any event, it’s thrilling to hear about such developments. The first white-flowered Japanese morning glory was painted in Japan in 1631. Now, science is capable of doing centuries of work on nature’s part in a fraction of the time.

Scientific reference: Kenta Watanabe, Anna Kobayashi, Masaki Endo, Kimiyo Sage-Ono, Seiichi Toki, Michiyuki Ono, CRISPR/Cas9-mediated mutagenesis of the dihydroflavonol-4-reductase-B (DFR-B) locus in the Japanese morning glory Ipomoea (Pharbitis) nil, Scientific Reports, Doi:10.1038/s41598-017-10715-1

share Share

New Liquid Uranium Rocket Could Halve Trip to Mars

Liquid uranium rockets could make the Red Planet a six-month commute.

Scientists think they found evidence of a hidden planet beyond Neptune and they are calling it Planet Y

A planet more massive than Mercury could be lurking beyond the orbit of Pluto.

People Who Keep Score in Relationships Are More Likely to End Up Unhappy

A 13-year study shows that keeping score in love quietly chips away at happiness.

NASA invented wheels that never get punctured — and you can now buy them

Would you use this type of tire?

Does My Red Look Like Your Red? The Age-Old Question Just Got A Scientific Answer and It Changes How We Think About Color

Scientists found that our brains process colors in surprisingly similar ways.

Why Blue Eyes Aren’t Really Blue: The Surprising Reason Blue Eyes Are Actually an Optical Illusion

What if the piercing blue of someone’s eyes isn’t color at all, but a trick of light?

Meet the Bumpy Snailfish: An Adorable, Newly Discovered Deep Sea Species That Looks Like It Is Smiling

Bumpy, dark, and sleek—three newly described snailfish species reveal a world still unknown.

Scientists Just Found Arctic Algae That Can Move in Ice at –15°C

The algae at the bottom of the world are alive, mobile, and rewriting biology’s rulebook.

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.