homehome Home chatchat Notifications


Scientists unravel mystery of Greenland lakes: they're sinking

Geoscientists have finally unraveled one of Greenland's long-standing mysteries: how billions of gallons of water can drain in a matter of hours. They believe that this might also help us better understand how sea levels will rise in the future.

Alexandra Gerea
June 4, 2015 @ 5:00 am

share Share

Geoscientists have finally unraveled one of Greenland’s long-standing mysteries: how billions of gallons of water can drain in a matter of hours. They believe that this might also help us better understand how sea levels will rise in the future.

Greenland’s superglacial lakes. Image via Washington University.

Every summer, Greenland’s ice starts to melt and “pockets” of water start to form – I use the quotes because these pockets can reach enormous sizes. They are basically large lakes, superglacial lakes (because they form on ice). In 2006, Greenland’s North Lake, a 2.2 square-mile (5.6 square kilometers) “pocket” lost almost 12 billion gallons of water in less than two hours, and researchers couldn’t figure out where all the water went. This is not a singular case; similar drains have been observed several times across Greenland’s surface. Now researchers at MIT, Woods Hole Oceanographic Institution (WHOI) claim they’ve finally cracked that mystery.

“We’ve found a mechanism that demystifies what’s happening.” The lead study goes on to say, “We know that the ice sheet will continue to increase its contribution to sea level rise over the coming years. The implications of this study show us more of how these processes will play out.”

It was clear that the water has to seep through some fractures in the ice, but it was not known what causes these fractures. Ironically, it’s actually the water. In this new study used GPS technology and found that the hydro-fractures form from tension-related stress caused by movements of the ice sheet. These movements are, in turn, triggered by the trickling meltwater.When summer comes, meltwater drains to the bed from the ice surface through crevasses or moulins and it causes the area within and around the basin to “jack up”; it also decreases the surface area of the ice-sheet bed that’s in contact with the underlying bedrock, acting like a lubricant for the entire lakebed.

“We found that before we get the main expression of the lake drainage, there is a period of time (about six to 12 hours) where uplift and slip increase,” said Laura Stevens, a glaciology doctoral candidate with the Massachusetts Institute of Technology/Woods Hole Oceanographic Institution (MIT-WHOI) Joint Program. “That motion is enough to take the surface of the ice sheet and put portions of it in high tension that allows cracks to start forming.”

While most of Greenland’s superglacial lakes drain slowly, some 13% of them drain quickly, vanishing in less a day.

“The images would show the lake there one day, and gone the next day,” said first author of the new study, Stevens adds. “So we’ve known for the last 10 to 15 years that the water could disappear quickly.”

A supraglacial lake on the western margin of the Greenland Ice Sheet.
Credit: Laura A. Stevens

There is more to this study than just understanding the glacial dynamics that enable fast drainage – this could have implications for global sea levels.

“It is critical to understand how and why these lakes drain in order to predict how much mass the ice sheet will contribute to sea-level rise in our warming climate,” Stevens says. “We find that while lakes are forming inland, they probably won’t drain by this … mechanism. The inland lakes will more likely drain their water via surface stream runoff, which transfers the water to the bed in more coastal areas of the ice sheet. So, while we see inland ice beginning to speed up as more melt happens inland, the draining of inland lakes likely won’t exacerbate the situation.”

While there are no definite results at the moment, it seems that this process won’t actually affect sea-level rise, but it could enable researchers to develop better climate models.

Richard Alley, a professor of geosciences at Penn State University who was not involved in the research thinks this may be especially useful.

“For Greenland, the worst possible case won’t be quite as bad as people might have thought,” says Alley, who was not involved in the research. “I think that the big contribution here is to other scientists in the field; we will use these interesting and useful results to improve models and projections, and to guide further research.”

share Share

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

Japanese scientists unveil a material that dissolves in hours in contact with salt, leaving no trace behind.