homehome Home chatchat Notifications


Scientists find potential antidote to world's most venomous sea creature

To box jellyfish carries enough venom to kill 60 people. Until now, there was no way to neutralize its deadly sting.

Tibi Puiu
May 1, 2019 @ 7:26 pm

share Share

Box jellyfish. Credit: Wikimedia Commmons.

Box jellyfish. Credit: Wikimedia Commons.

The Australian box jellyfish (Chironex fleckeri) can carry enough venom to kill 60 people — that’s more venom than any other animal on Earth. When it doesn’t kill, the jellyfish’s sting is known to cause excruciating pain. The worst part about this jellyfish’s sting is that there is no way to neutralize it once it happens — but this may soon change. Using gene editing technology, Australian researchers at the University of Sydney identified the mechanism by which the sea creature’s venom destroys human cells and found drugs that seem to at least partially block this ability.

In order to find out how the box jellyfish venom acts upon the human body, the researchers painstakingly used CRISPR gene editing to knock out a different human gene from millions of individual human cells. One by one, the researchers went through each cell looking for those that survived the venom.

“It’s the first molecular dissection of how this type of venom works, and possibly how any venom works,” the study’s lead author Raymond Lau said in a statement.

The findings suggest that the venom targets the human skin where it interacts with cholesterol. When the researchers administered a drug (cyclodextrins) that eliminates cholesterol and is already approved on the market, they found that it can also work as an antidote as long as it was administered 15 minutes after a sting. The drug was tested on human cells in a lab dish and on live mice. By blocking the venom’s ability to interact with cholesterol, some of the pain should also be blocked.

“By putting the evidence together, we worked out which genes the box jellyfish venom needs to target in order to kill human cells in the lab. One we identified is a calcium transporter molecule called ATP2B1, and is present on the surface of cells,” Greg Neely, one of the authors of the new study, wrote for The Conversation.

The researchers say that they don’t know yet if the drug they identified can stop a heart attack — this is a question which they hope to answer in an upcoming new study.

What’s particularly interesting, however, is that the same method can be used to study other types of venom for which there currently isn’t an antidote. This was only the first time that CRISPR was used to find an antivenom and it certainly won’t be the last.

share Share

Scientists Find Hidden Clues in The Alexander Mosaic. Its 2 Million Tiny Stones Came From All Over the Ancient World

One of the most famous artworks of the ancient world reads almost like a map of the Roman Empire's power.

Ancient bling: Romans May Have Worn a 450-Million-Year-Old Sea Fossil as a Pendant

Before fossils were science, they were symbols of magic, mystery, and power.

These wolves in Alaska ate all the deer. Then, they did something unexpected

Wolves on an Alaskan island are showing a remarkable adaptation.

This AI Therapy App Told a Suicidal User How to Die While Trying to Mimic Empathy

You really shouldn't use a chatbot for therapy.

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

Why You Should Stop Using Scented Candles—For Good

They're seriously not good for you.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

To Fight Invasive Pythons in the Everglades Scientists Turned to Robot Rabbits

Scientists are unleashing robo-rabbits to trick and trap giant invasive snakes

Lab-Grown Beef Now Has Real Muscle Fibers and It’s One Step Closer to Burgers With No Slaughter

In lab dishes, beef now grows thicker, stronger—and much more like the real thing.

From Pangolins to Aardvarks, Unrelated Mammals Have Evolved Into Ant-Eaters 12 Different Times

Ant-eating mammals evolved independently over a dozen times since the fall of the dinosaurs.