homehome Home chatchat Notifications


Mathematics explains how lizards get their patterns

Math is all around us.

Elena Motivans
April 17, 2017 @ 2:00 pm

share Share

When you think about math, it often seems like an abstract concept that doesn’t connect to the real world. Actually, some patterns in animals can be explained by mathematical equations. Turing equations explain how many animals get certain coloured stripes or spots on a cellular level. The ocellated lizard’s (Timon lepidus) scale colours do not follow the Turing equations and are instead determined by the colour of their neighbouring cell. However, it turns that the Turing equations still do apply on a smaller level.

Changing scales

Researchers at the University of Geneva (UNIGE), Switzerland, and SIB Swiss Institute of Bioinformatics looked at how the ocellated lizard’s scales form their intricate patterns. The researchers took photos of the backs of three male lizards, from when they were 2 weeks old up to when they were 3 or 4 years old. Using the images, the researchers tracked the fate of approximately 5,000 hexagonal scales on their backs.

The intricate pattern of the scales, up-close and on the lizard. Credit: ©UNIGE.

As the lizards age, their scales change from brown with white spots to an intricate green and black pattern. The scales change colour one by one. About 1,500 scales changed colour in total per lizard. The researchers noticed something odd, some scales switched between the green and black colours multiple times. It turns out that the scales get their colour depending on the colour of their neighbour. In the end, each green scale had four black and two green neighbouring cells. In contrast, each black cell had three black and three green neighbours. This pattern, taking into account the colour of the neighbour, follows cellular automation, a concept in computer science.

To Turing or not to Turing

Cellular automation was invented by the mathematician John von Neumann in 1948. In cellular automation, units change their state depending on their neighbour, here a scale is a unit. The scales change colours depending on the colour of the scale next to them. In contrast, Alan Turing’s equations, discovered in 1952, involve microscopic interactions among coloured cells. Turing equations determine colour independently of any skin feature such as a hair or scale.

Zebrafish patterns follow the Turing equations and colour is determined by cell, not by scale. Image credits: Oregon State University.

But why don’t the lizards’ patterns follow the Turing equations as most other animals do? The scales themselves are clear but the colour of the underlying skin determines the colour of the scale, black or green. The skin under the scales is thick and there’s lots of space for the cells to interact. However, between scales, the skin is thin and there’s not so much room for interaction. The colour is limited to the scale-level, as opposed to the cell-level. In this case, 3D geometric skin features like these can interrupt a Turing pattern.

“But when you can show that there are general mathematical principles that can describe biological processes it provides a nice conceptual framework to understand what’s happening,” says Devi Stuart-Fox, an evolutionary biologist at the University of Melbourne in Australia.

In this lizard species, both Turing equations and cellular automation are actually at work determining the scale colour. This scientific discovery connects two well-known mathematic concepts. It is proof that math is not just restricted to the books!

Journal reference: Manukyan, L. et al. A living mesoscopic cellular automaton made of skin scales. Nature http://dx.doi.org/10.1038.nature22031 (2017).

share Share

Climate Change Unleashed a Hidden Wave That Triggered a Planetary Tremor

The Earth was trembling every 90 seconds. Now, we know why.

Archaeologists May Have Found Odysseus’ Sanctuary on Ithaca

A new discovery ties myth to place, revealing centuries of cult worship and civic ritual.

The World’s Largest Sand Battery Just Went Online in Finland. It could change renewable energy

This sand battery system can store 1,000 megawatt-hours of heat for weeks at a time.

A Hidden Staircase in a French Church Just Led Archaeologists Into the Middle Ages

They pulled up a church floor and found a staircase that led to 1500 years of history.

The World’s Largest Camera Is About to Change Astronomy Forever

A new telescope camera promises a 10-year, 3.2-billion-pixel journey through the southern sky.

Ancient Dung Reveals the Oldest Butterfly Fossils Ever Found

Microscopic wing scales bridge a 40-million-year gap in the fossil record

AI 'Reanimated' a Murder Victim Back to Life to Speak in Court (And Raises Ethical Quandaries)

AI avatars of dead people are teaching courses and testifying in court. Even with the best of intentions, the emerging practice of AI ‘reanimations’ is an ethical quagmire.

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.