homehome Home chatchat Notifications


How the dragonfly got its wing patterns

Dragonflies have been around for 200 million years, long before humans stepped in. They also feature intricate wing patterns, which humans are now studying using an algorithm.

Mihai Andrei
September 17, 2018 @ 10:02 pm

share Share

Researchers used a new algorithm to calculate how one of the most intricate and delicate patterns in the natural world developed: the dragonfly wings.

The hindwing of a dragonfly. Dragonflies are among a group of insect species that have a complex network of veins, partitioning the wing into hundreds or thousands of small, simple shapes. The shape and position of these secondary veins are endlessly variable, generating unique patterns on each individual wing. Image credits: Harvard University.

Dragonflies have been around for 200 million years, and they’ve developed some remarkable features. For starters, they’re fierce predators, widely considered to be the most efficient predators in the animal world. Dragonflies are also agile fliers, with powerful wing muscles and a robust physical constitution. Sure, the wings seem very delicate and fragile to us, but at the insect scale, they’re truly powerhouses.

The wings of dragonflies also feature remarkably intricate patterns, which have puzzled researchers for quite a while. Each pattern is unique, but the reason why complicated patterns form (like leopard spots or zebra stripes) is still not exactly clear. So Harvard researchers set out to develop a framework for understanding how they form.

They compiled a database of more than 500 specimens from 215 different species of dragonflies and damselflies (a closely related group), “teaching” the algorithm to differentiate each individual shape made from the intersecting veins on the wings of the insect.

A differentiated, or segmented, wing outlining each individual polygonal shape made from the intersecting veins. Image credits: Harvard University.

The authors found that while every pattern is unique, the general distribution is remarkably similar across families and species. Based on this finding, the researchers built a developmental model for how these patterns can be formed.

They found that by inputting only a few simple parameters, they can determine the formation of complex patterns, similar to what is observed in nature.

Scientists tested the algorithm on several species, even some distantly related insects, finding that every time, it generates life-like reproduction of wings.

Dragonflies and damselflies have particularly elaborate vein patterns. The researchers compiled a dataset of wings from 232 species and 17 families of dragonflies and damselflies. Image credits: Harvard University.

Researchers also propose a reason why the patterns develop this way, though this has not been verified yet.

They believe the primary veins follow a regulated distribution pattern. From these veins, an inhibitory signal diffuses from multiple signaling centers. These inhibitory zones emerge randomly and repel one another, further preventing secondary veins from growing in certain areas. This already creates complex patterns, and as the wing grows and develops, it creates the complex geometries of the veins.

The study has been published in PNAS.

share Share

A Former Intelligence Officer Claimed This Photo Showed a Flying Saucer. Then Reddit Users Found It on Google Earth

A viral image sparks debate—and ridicule—in Washington's push for UFO transparency.

This Flying Squirrel Drone Can Brake in Midair and Outsmart Obstacles

An experimental drone with an unexpected design uses silicone wings and AI to master midair maneuvers.

Oldest Firearm in the US, A 500-Year-Old Cannon Unearthed in Arizona, Reveals Native Victory Over Conquistadores

In Arizona’s desert, a 500-year-old cannon sheds light on conquest, resistance, and survival.

No, RFK Jr, the MMR vaccine doesn’t contain ‘aborted fetus debris’

Jesus Christ.

“How Fat Is Kim Jong Un?” Is Now a Cybersecurity Test

North Korean IT operatives are gaming the global job market. This simple question has them beat.

This New Atomic Clock Is So Precise It Won’t Lose a Second for 140 Million Years

The new clock doesn't just keep time — it defines it.

A Soviet shuttle from the Space Race is about to fall uncontrollably from the sky

A ghost from time past is about to return to Earth. But it won't be smooth.

The world’s largest wildlife crossing is under construction in LA, and it’s no less than a miracle

But we need more of these massive wildlife crossings.

Your gold could come from some of the most violent stars in the universe

That gold in your phone could have originated from a magnetar.

Ronan the Sea Lion Can Keep a Beat Better Than You Can — and She Might Just Change What We Know About Music and the Brain

A rescued sea lion is shaking up what scientists thought they knew about rhythm and the brain