homehome Home chatchat Notifications


Bermuda fireworms glow in a one-of-a-kind way

Glow your own way.

Elena Motivans
August 8, 2018 @ 9:01 pm

share Share

Bermuda fireworms (Odontosyllis enopla) were described by Christopher Columbus in 1492 as “looking like the flame of a small candle alternately raised and lowered.” These worms glow a striking green-blue color before mating. Researchers from the American Museum of Natural History looked at this phenomenon on a molecular level to see what exactly causes these fireworms to glow.

The fireworms only glow during the mating season. The females have a spookily accurate sense of time and always start to glow a blue-green color 22 minutes after sundown on the third night after a full moon, throughout the summer and autumn. The tantalizing glow then attracts the males.

The Bermuda fireworm. Image credits: © James B. Wood.

“The female worms come up from the bottom and swim quickly in tight little circles as they glow, which looks like a field of little cerulean stars across the surface of jet black water,” said Mark Siddall, a curator in the American Museum of Natural History’s Division of Invertebrate Zoology and corresponding author of the study. “Then the males, homing in on the light of the females, come streaking up from the bottom like comets–they luminesce, too. There’s a little explosion of light as both dump their gametes in the water. It is by far the most beautiful biological display I have ever witnessed.”

The researchers analyzed the full set of RNA molecules from twelve female Bermuda fireworms. They found that the worms glow due to a luciferase enzyme. Although luciferases are already known to be responsible for bioluminescence in many organisms — such as copepods, fungi, and jellyfish — this particular enzyme is new! It is especially exciting that this particular enzyme has never been seen before, because it could potentially be used as a tagging molecule in biomedical research, to track the movement of certain factors in cells, for example.

The researchers were also interested in how the timing of the mating display may be linked to other physical or genetic changes in the worms. Just before mating, the worms prepare themselves by enlarging their eyes and modifying the organ that stores and releases gametes. After mating, these changes reverse themselves. These worms are pretty fascinating, and perhaps the most punctual maters of all time! It would be interesting to learn more about the genetic cues for beginning the glowing process.

 

share Share

Mars Seems to Have a Hot, Solid Core and That's Surprisingly Earth-Like

Using a unique approach to observing marsquakes, researchers propose a structure for Mars' core.

New Catalyst Recycles Plastics Without Sorting. It Even Works on Dirty Trash

A nickel catalyst just solved the biggest problem in plastic recycling.

Scientists Just Discovered a Massive Source of Drinking Water Hiding Beneath the Atlantic Ocean

Scientists drill off Cape Cod and uncover vast undersea aquifers that may reshape our water future.

Your Next Therapist Could be a Video Game or a Wearable and It Might Actually Work

An inside look at a new wave of evidence-backed digital therapies.

This Bizarre Deep Sea Fish Uses a Tooth-Covered Forehead Club to Grip Mates During Sex

Scientists studying a strange deep sea fish uncovered the first true teeth outside the jaw.

Researchers Discovered How to Trap Cancer Cells by "Reprogramming" Their Environment

Scientists find a way to stop glioblastoma cells by stiffening a key brain molecule

Humans made wild animals smaller and domestic animals bigger. But not all of them

Why are goats and sheep so different?

Daddy longlegs have two more eyes they've been hiding from us

The eyes are relics form their evolutionary past.

Ultra-Processed Foods Made Healthy Young Men Gain Fat and Lose Sperm Quality in Just Three Weeks

Processed foods harmed hormones and fertility markers even with identical calories.

A New Solar Panel Shield Made From Onion Peels Outlasted Industry Plastics in Tests

Natural dye from discarded onion peels outperforms fossil-based UV filters in durability and performance