homehome Home chatchat Notifications


Baby Cardinal fish follow the magnetic field back home, scientists find

Fee-shee go home.

Alexandru Micu
December 22, 2016 @ 4:35 pm

share Share

When night comes, baby Cardinal fish always know where home is — because they can feel the Earth’s magnetic field. New research has shown that the animals have an internal ‘compass’ that can help them orient even when there’s no sun or stars shining to guide them.

Cardinal Fish

Image credits Serge Melki / Flickr.

Professor Mike Kingsford from the ARC Centre of Excellence for Coral Reef Studies at James Cook University wanted to know why it is that baby Cardinal fish can always find their home at night. So he teamed up with colleagues from Germany to study the fingernail-sized little critters.

“This study is the first clear demonstration that reef fish larvae possess magnetic senses to orient them at night,” says Professor Kingsford. “Up until now, we only knew adult birds, marine mammals, sharks and boney fish have this in-built sense of direction.”

The team collected Cardinal fish less than one centimeter in length from Great Barrier Reef’s One Tree Island. They tested how well the fishes were able to orient in total darkness in the same magnetic field as the reef’s. As Kingsford explained, the fish normally orient to the south east but when the team shifted the magnetic field 120 degrees clockwise, the fish changed the direction they swam in — they all turned west, confident they were still on track. This shows that the animals can feel magnetic fields and use them to orient themselves.

“We know from our previous research that once they start to get closer to their target, a ‘homing process’ begins, where the larvae rely on odor, sounds and landmarks to find and settle on a reef,” Kingsford added.

Reef fish, such as the Cardinals, hatch from eggs in the reef as larvae. They then spend a few days up to months in the open ocean while they grow and look for a different reef to settle or return home. But once they do reach a reef, they generally stay there for life.

“The study tells us these baby fish actually have brains. They know where they are going and are strong swimmers. As a result they have some control over the reef they end up on. It’s not just about being led by the currents.”

“Knowing this, we can develop more accurate models of where larvae go to determine the best way to protect and maintain sustainable fish stocks.”

The full paper “A magnetic compass that might help coral reef fish larvae return to their natal reef” has been published in the journal Current Biology.

share Share

The world’s largest wildlife crossing is under construction in LA, and it’s no less than a miracle

But we need more of these massive wildlife crossings.

Your gold could come from some of the most violent stars in the universe

That gold in your phone could have originated from a magnetar.

Ronan the Sea Lion Can Keep a Beat Better Than You Can — and She Might Just Change What We Know About Music and the Brain

A rescued sea lion is shaking up what scientists thought they knew about rhythm and the brain

Did the Ancient Egyptians Paint the Milky Way on Their Coffins?

Tomb art suggests the sky goddess Nut from ancient Egypt might reveal the oldest depiction of our galaxy.

Dinosaurs Were Doing Just Fine Before the Asteroid Hit

New research overturns the idea that dinosaurs were already dying out before the asteroid hit.

Denmark could become the first country to ban deepfakes

Denmark hopes to pass a law prohibiting publishing deepfakes without the subject's consent.

Archaeologists find 2,000-year-old Roman military sandals in Germany with nails for traction

To march legionaries across the vast Roman Empire, solid footwear was required.

Mexico Will Give U.S. More Water to Avert More Tariffs

Droughts due to climate change are making Mexico increasingly water indebted to the USA.

Chinese Student Got Rescued from Mount Fuji—Then Went Back for His Phone and Needed Saving Again

A student was saved two times in four days after ignoring warnings to stay off Mount Fuji.

The perfect pub crawl: mathematicians solve most efficient way to visit all 81,998 bars in South Korea

This is the longest pub crawl ever solved by scientists.