Ice floats— that’s why the ocean has polar ice and icebergs, and why the ice in your drink floats. If you think about it, it might seem a bit strange because ice is a solid and intuitively, it should be heavier than a liquid and sink. Though this is true for most substances, water is an exception. Its hydrogen bonds and its solid state actually make it lighter than it is as a liquid.

Ice is less dense

Water is an amazing substance that basically fuels life on earth— every living organism needs it. It also has some interesting properties that enable life to be the way that it is. One of the most important properties is that water is the densest at 4 °C (40°F). Hot water and ice are both less dense than cool water. Less dense substances float on top of more dense substances. For example, when you make salad dressing oil floats on top of vinegar because it is less dense. The same is true for everything. If you have a blow-up beach ball in a pool, it floats, if you have a rock, it sinks.

Although it seems heavy, an iceberg is less dense than water. Image credits: NOAA’s National Ocean Service.

The reason why ice is less dense than water has to do with hydrogen bonds. As you know, water is made up of one oxygen and two hydrogen atoms. They are attached by covalent bonds that are very strong. However, another type of bond also forms between different water molecules called a hydrogen bond, which is weaker. These bonds form because the positively-charged hydrogen atoms are attracted the negatively-charged oxygen atoms of nearby water molecules. When water is warm, the molecules are very active, move around a lot, and form and break bonds with other water molecules quickly. They have the energy to push closer to each other and move quickly.

As water gets below 4 °C, the kinetic energy decreases so the molecules don’t move around so much anymore. They don’t have the energy to move and break and form bonds so easily. Instead, they form more hydrogen bonds with other water molecules to form hexagonal lattice structures. They form these structures to keep the negatively charged oxygen molecules apart. In the middle of the hexagons, there is a lot of empty space.

The structure of water molecules as they form ice, notice all the empty space. Image credits: NIMSoffice.

Ice is actually about 9% less dense than liquid water. Therefore, ice takes up more space than water. Practically, this makes sense, because ice expands. It’s why you shouldn’t freeze a glass bottle of water and why frozen water can create bigger cracks in concrete. If you have a liter bottle of ice and a liter bottle of water, then the ice water bottle would be lighter. The molecules are further away from each other at this point than when the water is warmer. Therefore, ice is less dense that water and floats.

When ice melts, the stable crystal structure collapses and is suddenly denser. As water warms past 4 °C, it gains energy and the molecules move faster and further apart. So hot water also takes up more space than colder water and it floats on top of the cooler water because it is less dense. It’s like when you go to a lake to go swimming and the top layer is nice and warm but when you stick your legs below it is suddenly much colder.

Important for our Earth

So why does this even matter? Ice’s buoyancy has important consequences for life on earth. Lakes freeze over on the top in the winter in cold places, which allows fish and other animals to survive below. If the bottom froze, the whole lake could be frozen and almost nothing could survive the winter in the lake. In the northern or southern oceans, if ice sank, the ice caps would all be at the bottom of the ocean, preventing anything from living there. The ocean floor would be full of ice. Additionally, polar ice is important because it reflects light and keeps our planet from getting too warm.

Click here for reuse options!
Copyright 2017 ZME Science

Enjoyed this article? Join 40,000+ subscribers to the ZME Science newsletter. Subscribe now!

Like us on Facebook

Your opinion matters -- voice it in the comments below!